[1] Esplugas S, Giménez J, Contreras S, et al. Comparison of different advanced oxidation processes for phenol degradation[J]. Water Research, 2002, 36(4):1034-1042
[2] Sprynskyy M, Lebedynets M, Namie J, et al. Phenolics occurrence in surface water of the Dniester river basin (West Ukraine):Natural background and industrial pollution[J]. Environmental Geology, 2007, 53(1):67-75
[3] Wu C, Liu X, Wei D, et al. Photosonochemical degradation of phenol in water[J]. Water Research, 2001, 35(16):3927-3933
[4] Li Z, Wu M, Jiao Z, et al. Extraction of phenol from wastewater by N-octanoylpyrrolidine[J]. Journal of Hazardous Materials, 2004, 114(1/2/3):111-114
[5] Alzaydien A S, Manasreh W. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto activated phosphate rock[J]. International Journal of Physical Sciences, 2009, 4(4):172-181
[6] Banat F A, Al-Bashir B, Al-Asheh S et al. Adsorption of phenol by bentonite[J]. Environ Pollut, 2000, 107(3):391-398
[7] Cahn R P, Li N. Separation of phenol from waste water by the liquid membrane technique[J]. Separation Science, 1974, 9(6):505-519
[8] Klibanov A M, Tu T M, Scott K P. Peroxidase-Catalyzed removal of phenols from coal-conversion waste waters[J]. Science, 1983, 221(4607):259-261
[9] Marrot B, Barrios-Martinez A, Moulin P, et al. Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor[J]. Biochemical Engineering Journal, 2006, 30(2):174-183
[10] De Sucre V S, Watkinson A P. Anodic oxidation of phenol for waste water treatment[J]. The Canadian Journal of Chemical Engineering, 1980, 58(6):52-59
[11] Liu Y, He X, Fu Y, et al. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes[J]. Chemical Engineering Journal, 2016, 284:1317-1327
[12] Hu P, Long M. Cobalt-Catalyzed sulfate radical-based advanced oxidation:A review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental, 2016, 181:103-117
[13] Dewil R, Appels L, Baeyens J. Improving the heat transfer properties of waste activated sludge by advanced oxidation processes[EB/OL]. 2007
[14] Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials, 2003, 98(1/2/3):33-50
[15] Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1934, 147(861):332-351
[16] Walling C. Fenton's reagent revisited[J]. Accounts of Chemical Research, 1975, 8(4):125-131
[17] House D A. Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chem Rev, 1962, 62(3):185-203
[18] Rao Y, Qu L, Yang H, et al. Degradation of carbamazepine by Fe(Ⅱ)-activated persulfate process[J]. Journal of Hazardous Materials, 2014, 268:23-32
[19] Liang C, Liang C, Chen C. pH dependence of persulfate activation by EDTA/Fe(Ⅲ) for degradation of trichloroethylene[J]. Journal of Contaminant Hydrology, 2009, 106(3/4):173-182
[20] Wang W, Song J, Han X. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2[J]. Journal of Hazardous Materials, 2013, 262:412-419
[21] Wang Q, Cao Y, Zeng H, et al. Ultrasound-Enhanced zero-valent copper activation of persulfate for the degradation of bisphenol AF[J]. Chemical Engineering Journal, 2019, doi:10.1016/j.cej.2019.122143
[22] Lau T K, Chu W, Graham N. The aqueous degradation of butylated hydroxyanisole by UV/S2O82-:Study of reaction mechanisms via dimerization and mineralization[J]. Environmental Science & Technology, 2007, 41(2):613-619
[23] Moradi M, Ghanbari F, Manshouri M et al. Photocatalytic degradation of azo dye using nano-ZrO2/UV/Persulfate:Response surface modeling and optimization[J]. Korean J. Chem. Eng. 2015, 33:539-546
[24] Yang S, Yang X, Shao X, et al. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature[J]. Journal of Hazardous Materials, 2011, 186(1):659-666
[25] Furman O S, Teel A L, Ahmad M, et al. Effect of basicity on persulfate reactivity[J]. Journal of Environmental Engineering, 2011, 137(4):241-247
[26] Liu C, Shih K, Sun C, et al. Oxidative degradation of propachlor by ferrous and copper ion activated persulfate[J]. Science of the Total Environment, 2012, 416:507-512
[27] Lin Y, Liang C, Chen J. Feasibility study of ultraviolet activated persulfate oxidation of phenol[J]. Chemosphere, 2011, 82(8):1168-1172
[28] Lei Y, Chen C, Tu Y, et al. Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4:Mechanism, stability, and effects of pH and bicarbonate ions[J]. Environmental Science & Technology, 2015, 49(11):6838-6845
[29] Bovio B, Locchi S. Crystal structure of the orthorhombic basic copper nitrate, Cu2(OH)3NO3[J]. Journal of Crystallographic and Spectroscopic Research, 1982, 12(6):507-517
[30] Zhan Y, Zhou X, Fu B, et al. Catalytic wet peroxide oxidation of azo dye (Direct Blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst[J]. Journal of Hazardous Materials, 2011, 187(1/2/3):348-354
[31] Shen L, Liang S, Wu W, et al. Multifunctional NH2- mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(Ⅵ)[J]. Dalton Transactions, 2013, 42(37):13649-13657
[32] Henrist C, Traina K, Hubert C, et al. Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis[J]. Journal of Crystal Growth, 2003, 254(1/2):176-187
[33] Petersen A B, Gniadecki R, Vicanova J, et al. Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes[J]. Journal of Photochemistry and Photobiology B:Biology, 2000, 59(1/2/3):123-131
[34] Liang C, Su H. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11):5558-5562
[35] Devi P, Das U, Dalai A K. In-situ chemical oxidation:Principle and applications of peroxide and persulfate treatments in wastewater systems[J]. Science of The Total Environment, 2016, 571:643-657
[36] Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2):513-886
[37] Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3):1027-1284
[38] Xu T, Kamat P V, O'Shea K E. Mechanistic evaluation of arsenite oxidation in TiO2Assisted photocatalysis[J]. The Journal of Physical Chemistry A, 2005, 109(40):9070-9075
[39] Duan X, Ao Z, Zhang H, et al. Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation:Core-Shell layer dependence[J]. Applied Catalysis B:Environmental, 2018, 222:176-181
[40] Cheng X, Guo H, Zhang Y, et al. Non-Photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J]. Water Research, 2017, 113:80-88
[41] Gsponer H E, Previtali C M, García N A. Kinetics of the photosensitized oxidation of polychlorophenols in alkaline aqueous solution[J]. Toxicological & Environmental Chemistry, 1987, 16(1):23-37
[42] Qi C, Liu X, Ma J, et al. Activation of peroxymonosulfate by base:Implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151:280-288
[43] Wang J, Wang S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334:1502-1517
[44] Yang Y, Pignatello J J, Ma J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)[J]. Environmental Science & Technology, 2014, 48(4):2344-2351
[45] Herrmann H, Reese A, Zellner R. Time-Resolved UV/VIS diode array absorption spectroscopy of SO-x(x=3, 4, 5) radical anions in aqueous solution[J]. Journal of Molecular Structure, 1995, 348:183-186
[46] Mehdi A, Farshid G. Degradation of organic pollutants by photoelectro-peroxone/ZVI process:Synergistic, kinetic and feasibility studies[J]. J Environ Manage, 2018, 228:32-39
[47] Wei Z, Villamena F A, Weavers L K. Kinetics and mechanism of ultrasonic activation of persulfate:An in situ EPR spin trapping study[J]. Environmental Science & Technology, 2017, 51(6):3410-3417
[48] Furman O S, Teel A L, Watts R J. Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010, 44(16):6423-6428
[49] Ike I A, Linden K G, Orbell J D, et al. Critical review of the science and sustainability of persulphate advanced oxidation processes[J]. Chemical Engineering Journal, 2018, 338:651-669
[50] Yang W, Jiang Z, Hu X, et al. Enhanced activation of persulfate by nitric acid/annealing modified multi-walled carbon nanotubes via non-radical process[J]. Chemosphere, 2019, 220:514-522
|