[1] 程友良, 刘萌, 刘志东, 等. 平板型集热器驱动的小型太阳能吸收式制冷系统运行分析与优化研究[J]. 可再生能源, 2021, 39(8):1023-1029 CHENG Youliang, LIU Meng, LIU Zhidong, et al. Operation analysis and optimization study of a small absorption refrigeration system driven by flat plate collector[J]. Renewable Energy Resources, 2021, 39(8): 1023-1029(in Chinese) [2] 朱润祺, 蔡德华, 宋海, 等. 小型太阳能空气制水机设计及性能分析[J]. 制冷与空调, 2022, 22(9): 5-9 ZHU Runqi, CAI Dehua, SONG Hai, et al. Design and performance analysis of a compact solar energy air water maker[J]. Refrigeration and Air-Conditioning, 2022, 22(9): 5-9(in Chinese) [3] 杨霏. 小型溴化锂吸收式制冷空调性能实验研究[D]. 北京: 华北电力大学(北京), 2018 YANG Fei. Experimental study on performance of small lithium bromide absorption refrigeration and air conditioning[D]. Beijing: North China Electric Power University, 2018(in Chinese) [4] CHEN J, DAI Y, WANG R. Experimental and analytical study on an air-cooled single effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings[J]. Solar Energy, 2017, 151: 110-118 [5] NAIRNE E. An account of some experiments made with an air-pump on Mr. Smeaton's principle; together with some experiments with a common air-pump[J]. Royal Society, 1777, 67 [6] 李娜. 太阳能吸收式制冷循环新型工质对的热物性及其应用研究[D]. 北京: 北京科技大学, 2018 LI Na. Study on thermophysical properties and application of a new working pair in solar absorption refrigeration cycle[D]. Beijing: University of Science and Technology Beijing, 2018(in Chinese) [7] 赵佳美. 新型吸收制冷工质对CO2-[emim][Tf2N]热力学性质理论研究[D]. 内蒙古包头: 内蒙古科技大学, 2014 ZHAO Jiamei. Theoretical study on thermodynamic properties of CO2-[emim][Tf2N] by a new absorption refrigeration working medium[D]. Inner Mongolia Baotou: Inner Mongolia University of Science & Technology, 2014(in Chinese) [8] 苏成睿. 离子液体新型工质对吸收制冷性能实验及其强化[D]. 辽宁大连: 大连理工大学, 2017 SU Chengrui. Experiment and strengthening of absorption refrigeration performance of ionic liquid new working medium[D]. Liaoning Dalian: Dalian University of Technology, 2017(in Chinese) [9] 李邹路. 以[Li(TX-7)]SCN为吸收剂的吸收式制冷工质研发[D]. 山东青岛: 青岛科技大学, 2021 LI Zoulu. Development of absorption refrigeration working medium with[Li(TX-7)] SCN as absorbent[D]. Shandong Qingdao: Qingdao University of Science & Technology, 2021(in Chinese) [10] 刘进阳. 高效氨水吸收式制冷系统的理论研究及应用[D]. 南宁: 广西大学, 2017 LIU Jinyang. Theoretical research and application of efficient ammonia absorption refrigeration system[D]. Nanning: Guangxi University, 2017(in Chinese) [11] 杨磊, 李华山, 陆振能, 等. 溴化锂吸收式制冷技术研究进展[J]. 新能源进展, 2019, 7(6):532-541 YANG Lei, LI Huashan, LU Zhenneng, et al. Progress of H2O/LiBr absorption refrigeration technology[J]. Advances in New and Renewable Enengy, 2019, 7(6): 532-541(in Chinese) [12] 王沐. 含离子液体的三元溶液固/汽-液相平衡理论与实验探究[D]. 南京: 东南大学, 2019 WANG Mu. Theoretical and experimental study on solid/vapor-liquid equilibrium of ternary solution containing ionic liquids[D]. Nanjing: Southeast University, 2019(in Chinese) [13] 解国珍, 褚伟鹏, 王刚, 等. 添加纳米粒子的溴化锂溶液传质特性[J]. 制冷学报, 2016, 37(4):33-38 XIE Guozhen, CHU Weipeng, WANG Gang, et al. Mass transfer characteristics of LiBr-aqueous solution added nano-particles[J]. Journal of Refrigeration, 2016, 37(4): 33-38(in Chinese) [14] 张杰, 王宏建, 刘建伟, 等. 浅谈溴化锂吸收式制冷机组的选型[J]. 纯碱工业, 2020(6): 11-13 ZHANG Jie, WANG Hongjian, LIU Jianwei, et al. Discussion on selection of lithium bromide absorption refrigeration unit[J]. Soda Industry, 2020(6): 11-13(in Chinese) [15] 梁文兴, 徐新闳, 王瑶. 浅谈溴化锂吸收式制冷[J]. 科技风, 2019(14): 134 LIANG Wenxing, XU Xinhong, WANG Yao. Discussion on lithium bromide absorption refrigeration[J]. Technology Wind, 2019(14): 134(in Chinese) [16] SOMERS C, MORTAZAVI A, HWANG Y, et al. Modeling water/lithium bromide absorption chillers in ASPEN Plus[J]. Applied Energy, 2011, 88(11): 4197-4205 [17] 王鹏辉. 双效溴化锂吸收式制冷机的动态特性分析与性能优化[D]. 北京: 华北电力大学, 2020 WANG Penghui. Dynamic characteristics analysis and performance optimization of double-effect lithium bromide absorption refrigerator[D]. Beijing: North China Electric Power University, 2020(in Chinese) [18] 张晓斌. 氨水吸收式制冷实验与仿真研究[D]. 山东青岛: 青岛科技大学, 2020 ZHANG Xiaobin. Experimental and simulation study on ammonia absorption refrigeration[D]. Shandong Qingdao: Qingdao University of Science & Technology, 2020(in Chinese) [19] ARIYADI H M, CORONAS A. Absorption capacity of ammonia into ionic liquids for absorption refrigeration applications[J]. Journal of Physics: Conference Series, 2016, 745: 032105 [20] MORENO D, FERRO V R, DE RIVA J, et al. Absorption refrigeration cycles based on ionic liquids: Refrigerant/absorbent selection by thermodynamic and process analysis[J]. Applied Energy, 2018, 213: 179-194 [21] 郭紫君, 孙晗, 党超镔, 等. 离子液体用于吸收式制冷系统的筛选[J]. 制冷与空调, 2019, 33(2): 112-118 GUO Zijun, SUN Han, DANG Chaobin, et al. Ionic liquid screening for absorption refrigeration systems[J]. Refrigeration & Air Conditioning, 2019, 33(2): 112-118(in Chinese) [22] 赵天宇, 郭开华, 皇甫立霞, 等. 氨基离子液体/CO2高温高效吸收式制冷循环研究[J]. 制冷学报, 2019, 40(1): 114-120 ZHAO Tianyu, GUO Kaihua, HUANGFU Lixia, et al. Study on amino ionic liquid/CO2 high-temperature and high-efficiency absorption refrigeration cycle[J]. Journal of Refrigeration, 2019, 40(1): 114-120(in Chinese) [23] 赵心蕊, 徐震原, 王如竹. 采用离子液体-水工质对的GAX吸收式制冷循环性能研究[J]. 制冷学报, 2019, 40(4):52-58 ZHAO Xinrui, XU Zhenyuan, WANG Ruzhu. Performance analysis of a GAX absorption cycle with ionic liquid-water working pairs[J]. Journal of Refrigeration, 2019, 40(4): 52-58(in Chinese) [24] GONG Y, YANG L, LU Z, et al. Thermodynamic performance assessment of ammonia/ionic liquid based half-effect absorption refrigeration cycle[J]. Case Studies in Thermal Engineering, 2021, 25: 100924 [25] 王晓坡, 杜家浩, 陈建林, 等. 不同制冷剂/离子液体工质对的吸收式制冷循环性能分析[J]. 中南大学学报(自然科学版), 2021, 52(6):1817-1825 WANG Xiaopo, DU Jiahao, CHEN Jianlin, et al. Performance analysis of absorption refrigeration cycle based on different refrigerant/ionic liquids working pairs[J]. Journal of Central South University (Science and Technology), 2021, 52(6): 1817-1825(in Chinese) [26] DONG L, ZHENG D, LI J, et al. Suitability prediction and affinity regularity assessment of H2O+imidazolium ionic liquid working pairs of absorption cycle by excess property criteria and UNIFAC model[J]. Fluid Phase Equilibria, 2013, 348: 1-8 [27] KHAMOOSHI M, PARHAM K, ATIKOL U. Overview of ionic liquids used as working fluids in absorption cycles[J]. Advances in Mechanical Engineering, 2013, 5: 620592 [28] ZHENG D, DONG L, HUANG W, et al. A review of imidazolium ionic liquids research and development towards working pair of absorption cycle[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 47-68 [29] CERA-MANJARRES A, SALAVERA D, CORONAS A. Vapour pressure measurements of ammonia/ionic liquids mixtures as suitable alternative working fluids for absorption refrigeration technology[J]. Fluid Phase Equilibria, 2018, 476: 48-60 [30] 刘新刚. 气液平衡的测定及理论研究进展[J]. 化学推进剂与高分子材料, 2005, 3(4): 45-49 LIU Xingang. Research progress of measurement and theory on vapor-liquid equilibrium[J]. Chemical Propellants & Polymeric Materials, 2005, 3(4): 45-49(in Chinese) [31] CHEN W, LIANG S, GUO Y, et al. Thermodynamic performances of[mmim]DMP/Methanol absorption refrigeration[J]. Journal of Thermal Science, 2012, 21(6): 557-563 [32] TAKALKAR G D, BHOSALE R R, MALI N A, et al. Thermodynamic analysis of EMISE-water as a working pair for absorption refrigeration system[J]. Applied Thermal Engineering, 2019, 148: 787-795 [33] WANG M, BECKER T M, INFANTE FERREIRA C A. Assessment of vapor-liquid equilibrium models for ionic liquid based working pairs in absorption cycles[J]. International Journal of Refrigeration, 2018, 87: 10-25 [34] DE ARAÚJO H V, MASSUCHETTO L H P, DO NASCIMENTO R B C, et al. Thermodynamic performance analysis of a single-effect absorption refrigeration system operating with water and 1-ethyl-3-methylimidazolium-based ionic liquids mixtures[J]. Applied Thermal Engineering, 2022, 201: 117761 [35] SUJATHA I, VENKATARATHNAM G. Comparison of performance of a vapor absorption refrigeration system operating with some hydrofluorocarbons and hydrofluoroolefins as refrigerants along with ionic liquid[hmim][TF2N]as the absorbent[J]. International Journal of Refrigeration, 2018, 88: 370-382 [36] SUN Y, DI G, WANG J, et al. Performance analysis of R1234yf/ionic liquid working fluids for single-effect and compression-assisted absorption refrigeration systems[J]. International Journal of Refrigeration, 2020, 109: 25-36 [37] WU W, YOU T, ZHANG H, et al. Comparisons of different ionic liquids combined with trans-1, 3, 3, 3-tetrafluoropropene (R1234ze(E)) as absorption working fluids[J]. International Journal of Refrigeration, 2018, 88: 45-57 [38] LIU X, LI J, HOU K, et al. New environment friendly working pairs of dimethyl ether and ionic liquids for absorption refrigeration with high COP[J]. International Journal of Refrigeration, 2022, 134: 159-167 [39] BECKER T M, WANG M, KABRA A, et al. Absorption refrigeration cycles with ammonia-ionic liquid working pairs studied by molecular simulation[J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5442-5452 [40] 徐申骏, 祝铃钰, 陈曦. 基于联立法的PC-SAFT状态方程模型[J]. 计算机与应用化学, 2015, 32(12):1453-1456 XU Shenjun, ZHU Lingyu, CHEN Xi. Model of PC-SAFT state equation based on simultaneous method[J]. Computers and Applied Chemistry, 2015, 32(12): 1453-1456(in Chinese) [41] GROSS J, SADOWSKI G. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules[J]. Industrial & Engineering Chemistry Research, 2001, 40(4): 1244-1260 [42] 苏永庆, 薛婷婷, 苗艳, 等. 离子液体与有机物溶解性的理论研究及应用进展[J]. 云南民族大学学报(自然科学版), 2012, 21(5):326-329, 338 SU Yongqing, XUE Tingting, MIAO Yan, et al. Theoretic research and application of solubility of ionic liquids and organic substance[J]. Journal of Yunnan University of Nationalities (Natural Sciences Edition), 2012, 21(5): 326-329, 338(in Chinese) [43] CHEN Y, ZHOU T, ZHAO T, et al. Thermodynamic analysis of H2O-3-aminopropyl tributyl phosphonium glycinate as a working pair for absorption refrigeration system[J]. Applied Thermal Engineering, 2022, 213: 118658 [44] JIA X, LUO Y, XIAO D, et al. Experimental investigation on the phase behavior of DME/[P6, 6, 6, 14][Cl]and thermodynamic analysis for absorption refrigeration system[J]. International Journal of Refrigeration, 2022, 135: 5-13 [45] ZHANG M, ZHANG X, LIU Y, et al. Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents[J]. Environmental Science and Pollution Research, 2021, 28(27): 35537-35563 [46] ABEDIN R, HEIDARIAN S, FLAKE J C, et al. Computational evaluation of mixtures of hydrofluorocarbons and deep eutectic solvents for absorption refrigeration systems[J]. Langmuir, 2017, 33(42): 11611-11625 [47] ABEDIN R, SHEN Y, FLAKE J C, et al. Deep eutectic solvents mixed with fluorinated refrigerants for absorption refrigeration: A molecular simulation study[J]. The Journal of Physical Chemistry B, 2020, 124(22): 4536-4550 [48] HAGHBAKHSH R, PEYROVEDIN H, RAEISSI S, et al. Investigating the performance of novel green solvents in absorption refrigeration cycles: Energy and exergy analyses[J]. International Journal of Refrigeration, 2020, 113: 174-186 [49] ZHANG X, CAI L, CHEN T, et al. Vapor-liquid equilibrium measurements and assessments of low-GWP absorption working pairs (R32+DMETEG, R152a+DMETEG, and R161+DMETEG) for absorption refrigeration systems[J]. Energy, 2021, 224: 120082 [50] 贾秀璨, 罗勇, 王晓坡. DME或R600a与角鲨烷为工质对的吸收式制冷循环性能分析[J]. 制冷学报, 2022, 43(2):62-69 JIA Xiucan, LUO Yong, WANG Xiaopo. Performance analysis of absorption refrigeration cycles using DME or R600a and squalane as working pair[J]. Journal of Refrigeration, 2022, 43(2): 62-69(in Chinese) [51] 高赞军. 卤代烃+有机吸收剂相平衡理论与实验研究[D]. 杭州: 浙江大学, 2015 GAO Zanjun. Theoretical and experimental study on phase equilibrium of halogenated hydrocarbon+organic absorbent[D]. Hangzhou: Zhejiang University, 2015(in Chinese) [52] 邓如雷. HFCs+有机溶剂类工质对的气液相平衡及复合制冷循环特性[D]. 北京: 北京化工大学, 2014 DENG Rulei. Vapor-liquid equilibrium and composite refrigeration cycle characteristics of HFCs+organic solvent working pairs[D]. Beijing: Beijing University of Chemical Technology, 2014(in Chinese) [53] LI N, LUO C, SU Q. A working pair of CaCl2-LiBr-LiNO3/H2O and its application in a single-stage solar-driven absorption refrigeration cycle[J]. International Journal of Refrigeration, 2018, 86: 1-13 [54] CHENG X, YIN Y, GUO Y, et al. Experimental study on a novel air conditioning system for deep cascade utilization of waste heat[J]. Applied Thermal Engineering, 2022, 200: 117695 [55] ZHOU S, HE G, LI Y, et al. Comprehensive experimental evaluation of an exhaust-heat-driven absorption refrigeration cycle system using NH3-NaSCN as working pair[J]. International Journal of Refrigeration, 2021, 126: 168-180 [56] CAI D, JIANG J, HE G, et al. Experimental evaluation on thermal performance of an air-cooled absorption refrigeration cycle with NH3-LiNO3 and NH3NaSCN refrigerant solutions[J]. Energy Conversion and Management, 2016, 120: 32-43 [57] HUANG W, ZHENG D, XIA C, et al. Affinity regulation of the NH3+H2O system by ionic liquids with molecular interaction analysis[J]. Physical Chemistry Chemical Physics, 2017, 19(24): 16242-16250
|