[1] YANAR N, KALLEM P, SON M, et al. A New era of water treatment technologies: 3D printing for membranes[J]. Journal of Industrial and Engineering Chemistry, 2020, 91: 1-14 [2] 周建敏, 李非, 费莉婷, 等. 纳米粒子/氧化石墨烯改性复合膜制备及其分离性能研究[J]. 化学工业与工程, 2023, 40(2): 104-113 ZHOU Jianmin, LI Fei, FEI Liting, et al. Preparation and separation performance of nanoparticles/graphene oxide modified composite membrane[J]. Chemical Industry and Engineering, 2023, 40(2): 104-113(in Chinese) [3] 姚增光, 杨焯, 吴洪, 等. 高通量、抗污染油水分离膜的研究进展[J]. 化学工业与工程, 2023, 40(3): 2-12 YAO Zengguang, YANG Zhuo, WU Hong, et al. Progress in research on high-flux and antifouling membranes for oil-water separation[J]. Chemical Industry and Engineering, 2023, 40(3): 2-12(in Chinese) [4] 范益群, 邢卫红. 陶瓷膜表面性质研究进展[J]. 膜科学与技术, 2013, 33(5):1-7 FAN Yiqun, XING Weihong. Progress in research on surface properties of ceramic membranes[J]. Membrane Science and Technology, 2013, 33(5):1-7(in Chinese) [5] MAO H, BU J, DA X, et al. High-performance self-cleaning piezoelectric membrane integrated with in situ ultrasound for wastewater treatment[J]. Journal of the European Ceramic Society, 2020, 40(10): 3632-3641 [6] LEVIN I, BRANDON D. Metastable alumina polymorphs: Crystal structures and transition sequences[J]. Journal of the American Ceramic Society, 1998, 81(8): 1995-2012 [7] 李泊源, 朱士贞, 王康, 等. 氧化铝煅烧温度对丙烷脱氢催化剂性能的影响[J]. 化学工业与工程, 2022, 39(1): 33-39 LI Boyuan, ZHU Shizhen, WANG Kang, et al. Effect of calcination temperature of alumina on performance of propane dehydrogenation catalysts[J]. Chemical Industry and Engineering, 2022, 39(1): 33-39(in Chinese) [8] 牛海超, 王为. 由铝-空气电池放电产物制备单分散纳米α-Al2O3[J]. 化学工业与工程, 2017, 34(4):39-43 NIU Haichao, WANG Wei. Preparation of monodisperse α-Al2O3 by aluminum-air battery discharge product[J]. Chemical Industry and Engineering, 2017, 34(4): 39-43(in Chinese) [9] SHI W, YANG C, QIU M, et al. A new method for preparing α-alumina ultrafiltration membrane at low sintering temperature[J]. Journal of Membrane Science, 2022, 642: 119992 [10] LI H, WANG X. Phase control in inorganic nanocrystals through finely tuned growth at an ultrathin scale[J]. Accounts of Chemical Research, 2019, 52(3): 780-790 [11] KIM H N, LEE S K. Effect of particle size on phase transitions in metastable alumina nanoparticles: A view from high-resolution solid-state 27Al NMR study[J]. American Mineralogist, 2013, 98(7): 1198-1210 [12] RIVERO-ANTÚNEZ P, CANO-CRESPO R, SÁNCHEZ-BAJO F, et al. Reactive SPS for sol-gel alumina samples: Structure, sintering behavior, and mechanical properties[J]. Journal of the European Ceramic Society, 2021, 41(11): 5548-5557 [13] 魏炎斌, 徐本军, 罗弦, 等. 高温原位XRD法研究含硅杂质TiO2的煅烧相变机理[J]. 化学工业与工程, 2019, 36(3): 8-15 WEI Yanbin, XU Benjun, LUO Xian, et al. Phase transition mechanism of calcined titanium dioxide containing silicon by high temperature In-situ X-ray diffraction[J]. Chemical Industry and Engineering, 2019, 36(3): 8-15(in Chinese) [14] CHEN H, REN B, MA Q, et al. Low-temperature preparation of α-Al2O3 with the assistance of seeding a novel hydroxyl aluminum oxalate[J]. Ceramics International, 2023, 49(11): 17305-17312 [15] BAHLAWANE N, WATANABE T. New Sol-gel route for the preparation of pure α-alumina at 950℃[J]. Journal of the American Ceramic Society, 2000, 83(9): 2324-2326 [16] HIDA M, YAMAGUCHI T, FUJITA T, et al. Low-temperature formation of α-alumina from polyhydroxoaluminum-lactic acid composite gels[J]. Journal of the Ceramic Society of Japan, 2005, 113(1315): 226-231 [17] YAMAGUCHI T, MUKOUYAMA N, FUJITA T, et al. Low-temperature formation of α-alumina from various polyhydroxoaluminum-hydroxy acid composite gels[J]. Ceramics International, 2011, 37(1): 201-206 [18] KOBAYASHI Y, YAMAMURA K, YASUDA Y, et al. Effect of peptiser species on crystallisation of alumina gel produced by sol-gel process[J]. Advances in Applied Ceramics, 2017, 116(5): 248-253 [19] YANG C, WEN J, CHEN X, et al. Modified hydrothermal treatment route for high-yield preparation of nanosized ZrO2[J]. Ceramics International, 2020, 46(12): 19807-19814 [20] SHI W, HU X, QIU M, et al. Low temperature preparation of high-flux α-alumina tight ultrafiltration membrane by modified Co-sintering process[J]. Separation and Purification Technology, 2022: 122524 [21] QI T, CHEN X, SHI W, et al. Fouling behavior of nanoporous ceramic membranes in the filtration of oligosaccharides at different temperatures[J]. Separation and Purification Technology, 2021, 278: 119589 [22] ZHANG Y, ZHANG Y, LI R, et al. Synthesis of ZrB2-SiC composite powders by sol-gel method using acetic acid as chemical modifier[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46: 200-204 [23] REZGUI S, GATES B C. Control of magnesia-alumina properties by acetic acid in Sol-gel synthesis[J]. Journal of Non-Crystalline Solids, 1997, 210(2/3): 287-297 [24] YAN Q, QIU M, CHEN X, et al. Ultrasound assisted synthesis of size-controlled aqueous colloids for the fabrication of nanoporous zirconia membrane[J]. Frontiers in Chemistry, 2019, 7: 337 [25] CHEN X, ZOU D, LIN Y, et al. Enhanced performance arising from low-temperature preparation of α-alumina membranes via titania doping assisted Sol-gel method[J]. Journal of Membrane Science, 2018, 559: 19-27 [26] LIN Y, CAI Y, DRIOLI E, et al. Enhancing mechanical and photocatalytic performances on TiO2/Ti composite ultrafiltration membranes via Ag doping method[J]. Separation and Purification Technology, 2015, 145: 29-38 [27] MAO H, QIU M, CHEN X, et al. Fabrication and in situ fouling mitigation of a supported carbon nanotube/γ-alumina ultrafiltration membrane[J]. Journal of Membrane Science, 2018, 550: 26-35 [28] ZOU D, CHEN X, QIU M, et al. Flux-enhanced α-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures[J]. Separation and Purification Technology, 2019, 215: 143-154
|