[1] ZHOU C, LU J, WANG J, et al. Research and application progress of silk fibroin membranes[J]. Asian Agricultural Research, 2021, 13(12):43-48 [2] ASAKURA T, SUGINO R, YAO J, et al. Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in the processed silk fiber (silk II) from Bombyx Mori using solid-state (13)C, (15)N, and (2)H NMR[J]. Biochemistry, 2002, 41(13):4415-4424 [3] HAKIMI O, KNIGHT D P, VOLLRATH F, et al. Spider and mulberry silkworm silks as compatible biomaterials[J]. Composites Part B:Engineering, 2007, 38(3):324-337 [4] ASAKURA T, OKUSHITA K, WILLIAMSON M P. Analysis of the structure of Bombyx mori Silk fibroin by NMR[J]. Macromolecules, 2015, 48(8):2345-2357 [5] YAMANE T, UMEMURA K, NAKAZAWA Y, et al. Molecular dynamics simulation of conformational change of poly(ala-gly) from silk Ⅰ to silk Ⅱ in relation to fiber formation mechanism of Bombyx mori silk fibroin[J]. Macromolecules, 2003, 36(18):6766-6772 [6] VALLUZZI R, GIDO S P, ZHANG W, et al. Trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air-water interface[J]. Macromolecules, 1996, 29(27):8606-8614 [7] HE S, VALLUZZI R, GIDO S P. Silk I structure in Bombyx mori silk foams[J]. International Journal of Biological Macromolecules, 1999, 24(2/3):187-195 [8] VOLKOV V, FERREIRA A V, CAVACO-PAULO A. On the routines of wild-type silk fibroin processing toward silk-inspired materials:A review[J]. Macromolecular Materials and Engineering, 2015, 300(12):1199-1216 [9] LIU Z, WAN Y, DOU H, et al. Effect of Na2CO3 degumming concentration on LiBr-formic acid-silk fibroin solution properties[J]. Thermal Science, 2016, 20(3):985-991 [10] YIN C, HAN X, LU Q, et al. Rhein incorporated silk fibroin hydrogels with antibacterial and anti-inflammatory efficacy to promote healing of bacteria-infected burn wounds[J]. International Journal of Biological Macromolecules, 2022, 201:14-19 [11] KOPP A, SCHUNCK L, GOSAU M, et al. Influence of the casting concentration on the mechanical and optical properties of FA/CaCl2-derived silk fibroin membranes[J]. International Journal of Molecular Sciences, 2020, 21(18):6704 [12] ROZET S, TAMADA Y. An improved process for stably preparing of Antheraea pernyi fibroin aqueous solution[J]. The Journal of Silk Science and Technology of Japan, 2019, 27(0):23-31 [13] WANG Z, LUO X, SUN J, et al. Investigation of chip formation mechanism in ultra-precision diamond turning of silk fibroin film[J]. Journal of Manufacturing Processes, 2022, 74:14-27 [14] WÖLTJE M, KÖLBEL A, AIBIBU D, et al. A fast and reliable process to fabricate regenerated silk fibroin solution from degummed silk in 4 hours[J]. International Journal of Molecular Sciences, 2021, doi:10.3390/ijms221910565 [15] VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007, 32(8/9):991-1007 [16] GOSLINE J M, GUERETTE P A, ORTLEPP C S, et al. The mechanical design of spider silks:From fibroin sequence to mechanical function[J]. The Journal of Experimental Biology, 1999, 202(Pt 23):3295-3303 [17] KOH L D, CHENG Y, TENG C, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Progress in Polymer Science, 2015, 46:86-110 [18] DAMODARAN S, KINSELLA J E. The effects of neutral salts on the stability of macromolecules. A new approach using a protein-ligand binding system[J]. Journal of Biological Chemistry, 1981, 256(7):3394-3398 [19] SAGNELLA A, PISTONE A, BONETTI S, et al. Effect of different fabrication methods on the chemo-physical properties of silk fibroin films and on their interaction with neural cells[J]. RSC Advances, 2016, 6(11):9304-9314 [20] HE Z, ZHAO T, ZHOU X, et al. Sequential order of the secondary structure transitions of proteins under external perturbations:Regenerated silk fibroin under thermal treatment[J]. Analytical Chemistry, 2017, 89(10):5534-5541 [21] HE Z, LIU Z, ZHOU X, et al. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy[J]. Proteins, 2018, 86(6):621-628 [22] YADAV R, PURWAR R. Influence of metal oxide nanoparticles on morphological, structural, rheological and conductive properties of mulberry silk fibroin nanocomposite solutions[J]. Polymer Testing, 2021, doi:10.1016/j.polymertesting.2020.106916 [23] CUNNIFF P M, FOSSEY S A, AUERBACH M A, et al. Mechanical and thermal properties of dragline silk from the spider Nephila clavipes[J]. Polymers for Advanced Technologies, 1994, 5(8):401-410 [24] SHAO Z, VOLLRATH F. Surprising strength of silkworm silk[J]. Nature, 2002, doi:10.1038/418741a [25] MOZAFARI M. Handbook of Biomaterials Biocompatibility:Chapter 1-Principles of bio-compatibility[M]. Cambridge:Sawston, 2020 [26] GUO X, LIN N, LU S, et al. Preparation and biocompatibility characterization of silk fibroin 3D scaffolds[J]. ACS Applied Bio Materials, 2021, 4(2):1369-1380 [27] LIN X, GAO L, LI R, et al. Mechanical property and biocompatibility of silk fibroin-collagen type II composite membrane[J]. Materials Science and Engineering:C, 2019, doi:10.1016/j.msec.2019.110018 [28] US PHARMACOPEIA. The United States Pharmacopeia/National Formulary[M]. New York:United States Pharmacopeia, 2007 [29] HORAN R L, ANTLE K, COLLETTE A L, et al. In vitro degradation of silk fibroin[J]. Biomaterials, 2005, 26(17):3385-3393 [30] ALTMAN G H, DIAZ F, JAKUBA C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3):401-416 [31] HU Y, ZHANG Q, YOU R, et al. The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds[J]. Advances in Materials Science and Engineering, 2012, 2012:1-5 [32] KAMBE Y, MIZOGUCHI Y, KUWAHARA K, et al. Beta-sheet content significantly correlates with the biodegradation time of silk fibroin hydrogels showing a wide range of compressive modulus[J]. Polymer Degradation and Stability, 2020, doi:10.1016/j.polymdegradstab.2020.109240 [33] MINOURA N, TSUKADA M, NAGURA M. Physico-chemical properties of silk fibroin membrane as a biomaterial[J]. Biomaterials, 1990, 11(6):430-434 [34] PEREIRA R F P, BRITO-PEREIRA R, GONÇALVES R, et al. Silk fibroin separators:A step toward lithium-ion batteries with enhanced sustainability, ACS Appl. Mater. Interfaces, 2018, 10:5385-5394 [35] GAO A, XIE K, SONG X, et al. Removal of the heavy metal ions from aqueous solution using modified natural biomaterial membrane based on silk fibroin[J]. Ecological Engineering, 2017, 99:343-348 [36] PILLEY S, KAUR H, HIPPARGI G, et al. Silk fibroin:A promising bio-material for the treatment of heavy metal-contaminated water, adsorption isotherms, kinetics, and mechanism[J]. Environmental Science and Pollution Research International, 2022, 29(37):56606-56619 [37] LIANG C, HIRABAYASHI K. Studies on the mechanical properties of silk fibroin membranes. (Part 3). The mechanical properties of fibroin-chitosan membranes[J]. Sen'i Gakkaishi, 1991, 47(7):334-338 [38] CHEN X, LI W, YU T. Conformation transition of silk fibroin induced by blending chitosan[J]. Journal of Polymer Science Part B:Polymer Physics, 1997, 35(14):2293-2296 [39] DU C, ZHU B, CHEN J, et al. Metal ion permeation properties of silk fibroin/chitosan blend membranes[J]. Polymer International, 2006, 55(4):377-382 [40] LIN N, ZUO B. Silk sericin/fibroin electrospinning dressings:A method for preparing a dressing material with high moisture vapor transmission rate[J]. Journal of Biomaterials Science, Polymer Edition, 2021, 32(15):1983-1997 [41] KIM E Y, TRIPATHY N, PARK J Y, et al. Silk fibroin film as an efficient carrier for corneal endothelial cells regeneration[J]. Macromolecular Research, 2015, 23(2):189-195 [42] JUNG R, JIN H. Preparation of silk fibroin/bacterial cellulose composite films and their mechanical properties[J]. Key Engineering Materials, 2007, 342/343:741-744 [43] HOSAKUN Y, HALÁSZ K, HORVÁTH M, et al. ATR-FTIR study of the interaction of CO2 with bacterial cellulose-based membranes[J]. Chemical Engineering Journal, 2017, 324:83-92 [44] WANG Q, WANG C, ZHANG M, et al. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers[J]. Nano Letters, 2016, 16(10):6695-6700 [45] KIM H S, PARK W I, KIM Y, et al. Silk fibroin films crystallized by multiwalled carbon nanotubes[J]. International Journal of Modern Physics B, 2008, 22(9n11):1807-1812 [46] CHOI M, HEO J, KIM H, et al. Control of gas permeability by transforming the molecular structure of silk fibroin in multilayered nanocoatings for CO2 adsorptive separation[J]. Journal of Membrane Science, 2019, 573:554-559 [47] LING S, ZHOU L, ZHOU W, et al. Conformation transition kinetics and spinnability of regenerated silk fibroin with glycol, glycerol and polyethylene glycol[J]. Materials Letters, 2012, 81:13-15 [48] MANN A, LYDON F, TIGHE B J, et al. A study of the permeation and water-structuring behavioural properties of PEG modified hydrated silk fibroin membranes[J]. Biomedical Physics & Engineering Express, 2021, doi:10.1088/2057-1976/abfd82 [49] ANG S L, SHAHARUDDIN B, CHUAH J A, et al. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin film is a promising scaffold for bone tissue engineering[J]. International Journal of Biological Macromolecules, 2020, 145:173-188 [50] LUO Z, ZHANG Y, ZHOU H, et al. A one-pot preparation of silk fibroin modified with polyurethane micro-particles[J]. New Journal of Chemistry, 2013, 37(10):3109-3115 [51] VENKATESAN H, HU J, CHEN J. Bioinspired fabrication of polyurethane/regenerated silk fibroin composite fibres with tubuliform silk-like flat Stress-Strain behaviour[J]. Polymers, 2018, doi:10.3390/polym10030333 [52] PARK H S, GONG M, PARK J H, et al. Silk fibroin-polyurethane blends:Physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation[J]. Acta Biomaterialia, 2013, 9(11):8962-8971 [53] WATCHARAJITTANONT N, PUTSON C, PRIPATNANONT P, et al. Layer-by-layer electrospun membranes of polyurethane/silk fibroin based on mimicking of oral soft tissue for guided bone regeneration[J]. Biomedical Materials (Bristol, England), 2019, doi:10.1088/1748-605x/ab3502 [54] FULLER M A, KÖPER I. Biomedical applications of polyelectrolyte coated spherical gold nanoparticles[J]. Nano Convergence, 2019, doi:10.1186/s40580-019-0183-4 [55] ZHU G, SUN Z, HUI P, et al. Composite film with antibacterial gold nanoparticles and silk fibroin for treating multidrug-resistant E. coli-infected wounds[J]. ACS Biomaterials Science & Engineering, 2021, 7(5):1827-1835 [56] RANJANA R, PARUSHURAM N, HARISHA K S, et al. Fabrication and characterization of conductive silk fibroin-gold nanocomposite films[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(1):249-264 [57] LIAO C, LI Y, TJONG S C. Bactericidal and cytotoxic properties of silver nanoparticles[J]. International Journal of Molecular Sciences, 2019, doi:10.3390/ijms20020449 [58] SHAO J, CUI Y T, LIANG Y, et al. Unilateral silver-loaded silk fibroin difunctional membranes as antibacterial wound dressings[J]. ACS Omega, 2021, 6(27):17555-17565 [59] PARRINO F, POMILLA F R, CAMERA-RODA G, et al. Properties of titanium dioxide. Titanium Dioxide (TiO2) and Its Applications[M]. Amsterdam:Elsevier, 2021 [60] CAI L, SHAO H, HU X, et al. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10):2551-2557 [61] FENG X, ZHANG L, CHEN J, et al. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2[J]. International Journal of Biological Macromolecules, 2007, 40(2):105-111 [62] ZHANG S, LI J, YIN Z, et al. Silk fibroin composite membranes for application in corneal regeneration[J]. Journal of Applied Polymer Science, 2015, doi:10.1002/app.42407 [63] ZHANG Y, LU L, CHEN Y, et al. Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect[J]. Biomaterials Science, 2019, 7(12):5232-5237 [64] PRIPATNANONT P, CHANKUM C, MEESANE J, et al. Physical and biological performances of a semi-resorbable barrier membrane based on silk fibroin-glycerol-fish collagen material for guided bone regeneration[J]. Journal of Biomaterials Applications, 2021, 36(5):930-942 [65] TANG Z, WANG X, YANG J, et al. Microconvex dot-featured silk fibroin films for promoting human umbilical vein endothelial cell angiogenesis via enhancing the expression of bFGF and VEGF[J]. ACS Biomaterials Science & Engineering, 2021, 7(6):2420-2429 [66] WEN D, SUN D, HUANG P, et al. Recent progress in silk fibroin-based flexible electronics[J]. Microsystems & Nanoengineering, 2021, 7(1):1-25 [67] REIZABAL A, GONÇALVES R, FIDALGO-MARIJUAN A, et al. Tailoring silk fibroin separator membranes pore size for improving performance of lithium ion batteries[J]. Journal of Membrane Science, 2020, doi:10.1016/j.memsci.2019.117678 [68] PARK J H, SEOK H J, KAMARAJ E, et al. Highly transparent and flexible Ag nanowire-embedded silk fibroin electrodes for biocompatible flexible and transparent heater[J]. RSC Advances, 2020, 10(53):31856-31862 [69] ZHOU J, LI Y, XIE L, et al. Humidity-sensitive, shape-controllable, and transient zinc-ion batteries based on plasticizing gelatin-silk protein electrolytes[J]. Materials Today Energy, 2021, doi:10.1016/j.mtener.2021.100712 [70] WANG D, WANG L, LOU Z, et al. Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors[J]. Nano Energy, 2020, doi:10.1016/j.nanoen.2020.105252 [71] GORE P M, NAEBE M, WANG X, et al. Progress in silk materials for integrated water treatments:Fabrication, modification and applications[J]. Chemical Engineering Journal, 2019, 374:437-470 [72] LI Z, TAN C, TIO W, et al. Manta ray gill inspired radially distributed nanofibrous membrane for efficient and continuous oil-water separation[J]. Environmental Science:Nano, 2018, 5(6):1466-1472 [73] MRUTHUNJAYAPPA M H, KOTRAPPANAVAR N S, MONDAL D. Bioinspired engineering protein nanofibrils-based multilayered self-cleaning membranes for universal water purification[J]. Journal of Hazardous Materials, 2022, doi:10.1016/j.jhazmat.2021.127561 [74] XIONG R, KIM H S, ZHANG S, et al. Template-guided assembly of silk fibroin on cellulose nanofibers for robust nanostructures with ultrafast water transport[J]. ACS Nano, 2017, 11(12):12008-12019 [75] LING S, QIN Z, HUANG W, et al. Design and function of biomimetic multilayer water purification membranes[J]. Science Advances, 2017, doi:10.1126/sciadv.1601939 [76] PRASAD B, MANDAL B. Moisture responsive and CO2 selective biopolymer membrane containing silk fibroin as a green carrier for facilitated transport of CO2[J]. Journal of Membrane Science, 2018, 550:416-426 [77] WANG Z, CUI Y, FENG Y, et al. A versatile Silk Fibroin based filtration membrane with enhanced mechanical property, disinfection and biodegradability[J]. Chemical Engineering Journal, 2021, doi:10.1016/j.cej.2021.131947 [78] GAO X, GOU J, ZHANG L, et al. A silk fibroin based green nano-filter for air filtration[J]. RSC Advances, 2018, 8(15):8181-8189
|