[1] SHOLL D S, LIVELY R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600):435-437 [2] MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review:Recent advances and future prospects[J]. Desalination, 2015, 356:226-254 [3] ERIKSSON P. Nanofiltration extends the range of membrane filtration[J]. Environmental Progress, 1988, 7(1):58-62 [4] WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5):1-15 [5] ZHANG W, YIN M, ZHAO Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport[J]. Nature Nanotechnology, 2021, 16(3):337-343 [6] QIU Z, FANG L, SHEN Y, et al. Ionic dendrimer based polyamide membranes for ion separation[J]. ACS Nano, 2021, 15(4):7522-7535 [7] CAO Y, CHEN G, WAN Y, et al. Nanofiltration membrane for bio-separation:Process-oriented materials innovation[J]. Engineering in Life Sciences, 2021, 21(6):405-416 [8] MARCHETTI P, JIMENEZ SOLOMON M F, SZEKELY G, et al. Molecular separation with organic solvent nanofiltration:A critical review[J]. Chemical Reviews, 2014, 114(21):10735-10806 [9] TUL MUNTHA S, KAUSAR A, SIDDIQ M. Advances in polymeric nanofiltration membrane:A review[J]. Polymer-Plastics Technology and Engineering, 2017, 56(8):841-856 [10] 焦阳, 李之行, 张瑛洁, 等. 可生物降解分离膜材料及其应用研究进展[J]. 化工进展, 2021, 40(2):949-958 JIAO Yang, LI Zhixing, ZHANG Yingjie, et al. Research progress on biodegradable membrane materials and their applications[J]. Chemical Industry and Engineering Progress, 2021, 40(2):949-958(in Chinese) [11] LOEB S. The Loeb-sourirajan membrane:How it came about[M]. ACS Symposium Series. WASHINGTON, D. C.:AMERICAN CHEMICAL SOCIETY, 1981 [12] THOMAS B, RAJ M C, ATHIRA K B, et al. Nanocellulose, a versatile green platform:From biosources to materials and their applications[J]. Chemical Reviews, 2018, 118(24):11575-11625 [13] 罗成成, 王晖, 陈勇. 纤维素的改性及应用研究进展[J]. 化工进展, 2015, 34(3):767-773 LUO Chengcheng, WANG Hui, CHEN Yong. Progress in modification of cellulose and application[J]. Chemical Industry and Engineering Progress, 2015, 34(3):767-773(in Chinese) [14] 周金盛, 陈观文. CA/CTA共混不对称纳滤膜分离特性的研究[J]. 膜科学与技术, 1999, 19(1):34-39 ZHOU Jinsheng, CHEN Guanwen. Study on characteristics of nanofiltration membrane from cellulose acetate and cellulose triacetate blends[J]. Membrane Science and Technology, 1999, 19(1):34-39(in Chinese) [15] GHAEMI N, MADAENI S S, ALIZADEH A, et al. Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane:Characterization and performance in rejection of pesticides[J]. Desalination, 2012, 290:99-106 [16] CANO-ODENA A, SPILLIERS M, DEDROOG T, et al. Optimization of cellulose acetate nanofiltration membranes for micropollutant removal via genetic algorithms and high throughput experimentation[J]. Journal of Membrane Science, 2011, 366(1/2):25-32 [17] 高从阶, 林斯青, 陈联珠, 等. CTA中空纤维反渗透膜的研制[J]. 水处理技术, 1983, 9(4):19-24 GAO Congjie, LIN Siqing, CHEN Lianzhu, et al. Development of cellulose triacetate hollow fibers ro membranes[J]. Technology of Water Treatment, 1983, 9(4):19-24(in Chinese) [18] 于品早, 周冠生, 陈小良. 三醋酸纤维素中空纤维纳滤膜的研制[J]. 膜科学与技术, 2001, 21(6):1-4 YU Pinzao, ZHOU Guansheng, CHEN Xiaoliang. Development of CTA hollow fiber nanofiltration membrane[J]. Membrane Science and Technology, 2001, 21(6):1-4(in Chinese) [19] 钟蔚, 许振良, 杨虎, 等. 三醋酸纤维素中空纤维纳滤膜的性能研究[J]. 水处理技术, 2016, 42(1):31-34, 40 ZHONG Wei, XU Zhenliang, YANG Hu, et al. Performance investigation of cellulose triacetate hollow fiber nanofiltration membrane[J]. Technology of Water Treatment, 2016, 42(1):31-34, 40(in Chinese) [20] ANOKHINA T S, YUSHKIN A A, MAKAROV I S, et al. Cellulose composite membranes for nanofiltration of aprotic solvents[J]. Petroleum Chemistry, 2016, 56(11):1085-1092 [21] ANOKHINA T S, PLESHIVTSEVA T S, IGNATENKO V Y, et al. Fabrication of composite nanofiltration membranes from cellulose solutions in an[Emim]OAc-DMSO mixture[J]. Petroleum Chemistry, 2017, 57(6):477-482 [22] SUKMA F M, ÇULFAZ-EMECEN P Z. Cellulose membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2018, 545:329-336 [23] HARDIAN R, ALAMMAR A, HOLTZL T, et al. Fabrication of sustainable organic solvent nanofiltration membranes using cellulose-chitosan biopolymer blends[J]. Journal of Membrane Science, 2022, doi:10.1016/j.memsci.2022.120743 [24] 苗晶, 陈国华, 高从堦, 等. 戊二醛交联的壳聚糖硫酸酯/聚砜复合纳滤膜的制备及截留特性[J]. 高校化学工程学报, 2007, 21(2):227-232 MIAO Jing, CHEN Guohua, GAO Congjie, et al. Preparation and characterization of sulfated chitosan(SCS)/polysulfone(PSF) composite nanofiltration membrane cross-linked by glutaraldehyde[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(2):227-232(in Chinese) [25] BORICHA A G, MURTHY Z V P. Preparation and performance of N, O-carboxymethyl chitosan-polyether sulfone composite nanofiltration membrane in the separation of nickel ions from aqueous solutions[J]. Journal of Applied Polymer Science, 2008, 110(6):3596-3605 [26] 张浩勤, 张婕, 朱艳青, 等. 界面聚合制备壳聚糖和均苯三甲酰氯复合纳滤膜[J]. 高校化学工程学报, 2009, 23(3):522-526 ZHANG Haoqin, ZHANG Jie, ZHU Yanqing, et al. The preparation of composite NF membrane by the interfacial polymerization between chitosan and trimesoyl chloride[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(3):522-526(in Chinese) [27] LEE S, CHOI E Y, KIM C K. Fabrication and properties of nanofiltration membranes assembled with chitosan on poly(ether sulfone) membranes surface-functionalized with acyl chloride groups[J]. Industrial & Engineering Chemistry Research, 2019, 58(16):6679-6686 [28] 陈国华, 苗晶, 高从堦. 一种壳聚糖硫酸酯-高分子聚合物复合纳滤膜的制备方法:CN1631498A[P]. 2007-01-24 CHEN Guohua, MIAO Jing, GAO Congjie. Method for preparing compound nanometer filtering membrane of chitosan sulfate-high molecule polymer:CN1631498A[P]. 2007-01-24(in Chinese) [29] ZHANG X, JIN X, XU C, et al. Preparation and characterization of glutaraldehyde crosslinked chitosan nanofiltration membrane[J]. Journal of Applied Polymer Science, 2013, 128(6):3665-3671 [30] MIAO J, LIN H, WANG W, et al. Amphoteric composite membranes for nanofiltration prepared from sulfated chitosan crosslinked with hexamethylene diisocyanate[J]. Chemical Engineering Journal, 2013, 234:132-139 [31] HUANG R, CHEN G, SUN M, et al. Studies on nanofiltration membrane formed by diisocyanate cross-linking of quaternized chitosan on poly(acrylonitrile) (PAN) support[J]. Journal of Membrane Science, 2006, 286(1/2):237-244 [32] MU T, CONG Y, WANG W, et al. Preparation and characterization of novel chitosan composite nanofiltration membrane containing mesogenic units[J]. Desalination, 2012, 298:67-74 [33] WENG R, CHEN L, LIN S, et al. Preparation and characterization of antibacterial cellulose/chitosan nanofiltration membranes[J]. Polymers, 2017, doi:10.3390/polym9040116 [34] 陈慧娟, 纪晓声, 陈霄翔, 等. 纤维素/壳聚糖共混纳滤膜的制备及其染料脱盐性能研究[J]. 膜科学与技术, 2018, 38(4):27-32 CHEN Huijuan, JI Xiaosheng, CHEN Xiaoxiang, et al. Preparation of CEL/CS blend nanofiltration membranes for dye desalination[J]. Membrane Science and Technology, 2018, 38(4):27-32(in Chinese) [35] EJIMA H, RICHARDSON J J, LIANG K, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science, 2013, 341(6142):154-157 [36] FAN L, MA Y, SU Y, et al. Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes[J]. RSC Advances, 2015, 5(130):107777-107784 [37] YOU F, XU Y, YANG X, et al. Bio-inspired Ni2+-polyphenol hydrophilic network to achieve unconventional high-flux nanofiltration membranes for environmental remediation[J]. Chemical Communications, 2017, 53(45):6128-6131 [38] CHAKRABARTY T, PÉREZ-MANRÍQUEZ L, NEELAKANDA P, et al. Bioinspired tannic acid-copper complexes as selective coating for nanofiltration membranes[J]. Separation and Purification Technology, 2017, 184:188-194 [39] XU Y, WANG Z, CHENG X, et al. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment[J]. Chemical Engineering Journal, 2016, 303:555-564 [40] XU Y, TANG Y, LIU L, et al. Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy[J]. Journal of Membrane Science, 2017, 526:32-42 [41] XU Y, GUO D, LI T, et al. Manipulating the mussel-inspired co-deposition of tannic acid and amine for fabrication of nanofiltration membranes with an enhanced separation performance[J]. Journal of Colloid and Interface Science, 2020, 565:23-34 [42] ZHANG N, JIANG B, ZHANG L, et al. Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation[J]. Chemical Engineering Journal, 2019, 359:1442-1452 [43] ZHANG R, LIU Y, HE M, et al. Mussel-inspired construction of organic-inorganic interfacial nanochannels for ion/organic molecule selective permeation[J]. Journal of Membrane Science, 2018, 555:337-347 [44] ZHAO R, LI Y, MAO Y, et al. Recycling the high-salinity textile wastewater by quercetin-based nanofiltration membranes with minimal water and energy consumption[J]. Environmental Science & Technology, 2022, 56(24):17998-18007 [45] ZHANG R, HE M, GAO D, et al. Polyphenol-assisted in-situ assembly for antifouling thin-film composite nanofiltration membranes[J]. Journal of Membrane Science, 2018, 566:258-267 [46] YOU X, WU H, ZHANG R, et al. Metal-coordinated sub-10 nm membranes for water purification[J]. Nature Communications, 2019, 10(1):1-10 [47] YU Q, YOU X, WU H, et al. Ultrathin fluorinated self-cleaning membranes via coordination-driven metal-bridging assembly for water purification[J]. Journal of Materials Chemistry A, 2020, 8(8):4505-4514 [48] YOU X, XIAO K, YU Q, et al. Fouling-resistant robust membranes via electrostatic complexation for water purification[J]. Chemical Engineering Journal, 2021, doi:10.1016/j.cej.2021.129139 [49] YANG X, HUANG J, YANG F, et al. Metal-organophosphate biphasic interfacial coordination reaction synthesizing nanofiltration membranes with the ultrathin selective layer, excellent acid-resistance and antifouling performance[J]. Journal of Membrane Science, 2022, doi:10.1016/j.memsci.2022.120521 [50] WANG Q, WEI X, WANG G-R, et al. Inner-selective coordination nanofiltration hollow fiber membranes from assist-pressure modified substrate[J]. Journal of Membrane Science, 2021, doi:10.1016/j.memsci.2021.119186 [51] LI W, BIAN C, FU C, et al. A poly(amide-co-ester) nanofiltration membrane using monomers of glucose and trimesoyl chloride[J]. Journal of Membrane Science, 2016, 504:185-195 [52] ZHENG J, LIU Y, ZHU J, et al. Sugar-based membranes for nanofiltration[J]. Journal of Membrane Science, 2021, doi:10.1016/j.memsci.2020.118786 [53] SHEN J, WANG G, YOU X, et al. Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane[J]. Journal of Materials Chemistry A, 2021, 9(13):8470-8479 [54] VILLALOBOS L F, HUANG T F, PEINEMANN K V. Cyclodextrin films with fast solvent transport and shape-selective permeability[J]. Advanced Materials (Deerfield Beach, Fla), 2017, doi:10.1002/adma.201606641 [55] XUE J, JIAO Z, BI R, et al. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin[J]. Journal of Membrane Science, 2019, 584:282-289 [56] XUE J, SHEN J, ZHANG R, et al. High-flux nanofiltration membranes prepared with β-cyclodextrin and graphene quantum dots[J]. Journal of Membrane Science, 2020, 10.1016/j.memsci.2020.118465 [57] JIANG Z, DONG R, EVANS A M, et al. Aligned macrocycle pores in ultrathin films for accurate molecular sieving[J]. Nature, 2022, 609(7925):58-64 [58] LIU J, HUA D, ZHANG Y, et al. Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 10.1002/adma.201705933
|