[1] Tang Q, Cui Y, Wu J, et al. Ternary tin selenium sulfide (SnSe0.5S0.5) nano alloy as the high-performance anode for lithium-ion and sodium-ion batteries[J]. Nano Energy, 2017, 41:377-386
[2] Tang Q, Su H, Cui Y, et al. Ternary tin-based chalcogenide nanoplates as a promising anode material for lithium-ion batteries[J]. Journal of Power Sources, 2018, 379:182-190
[3] Zeng J, Liu Y, Wu J, et al. Enhanced lithium diffusion of layered lithium-rich oxides with LixMn1.5Ni0.5O4 nanoscale surface coating[J]. Electrochimica Acta, 2017, 247:617-625
[4] Liu Y, Huang L, Ding Z, et al. On the tailoring the 1D rod-like hierarchical nano/micro LiNi0.8Co0.15Al0.05O2 structure with exposed (101) plane by template method[J]. Journal of Alloys and Compounds, 2019, 791:356-363
[5] Rozier P, Tarascon J M. Review:Li-Rich layered oxide cathodes for next-generation Li-ion batteries:Chances and challenges[J]. Journal of the Electrochemical Society, 2015, 162(14):A2490-A2499
[6] Song B, Liu Z, Lai M, et al. Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material[J]. Physical Chemistry Chemical Physics, 2012, doi:10.1039/C2CP42068F
[7] Guo H, Wei Z, Jia K, et al. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials[J]. Energy Storage Materials, 2019, 16:220-227
[8] Huang L, Liu L, Wu H, et al. Optimization of synthesis parameters for uniform sphere-like Li1.2Mn0.54Ni0.13Co0.13O2 as high performance cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 775:921-930
[9] Ito A, Li D, Sato Y, et al. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2[J]. Journal of Power Sources, 2010, 195(2):567-573
[10] Wang D, Belharouak I, Ortega L H, et al. Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation[J]. Journal of Power Sources, 2015, 274:451-457
[11] Wu F, Li N, Su Y, et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries[J]. Nano Letters, 2014, 14(6):3550-3555
[12] Yu X, Lü Y, Gu L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1 Mn0.55O2 cathode materials[J]. Advanced Energy Materials, 2014, doi:10.1002/aenm.201300950
[13] 殷春梅, 郭忻, 周春仙, 等. 表面包覆对富锂锰基材料循环稳定性影响研究[J]. 矿冶工程, 2016, 36(3):94-97 Yin Chunmei, Guo Xin, Zhou Chunxian, et al. Impacts of surface coating on cycle stability of Li-rich manganese-based material[J]. Mining and Metallurgical Engineering, 2016, 36(3):94-97(in Chinese)
[14] Dogan F, Croy J R, Balasubramanian M, et al. Solid state NMR studies of Li2MnO3and Li-rich cathode materials:Proton insertion, local structure, and voltage fade[J]. Journal of the Electrochemical Society, 2015, 162(1):A235-A243
[15] Zhang S, Gu H, Pan H, et al. A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201601066
[16] Zheng F, Yang C, Xiong X, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade[J]. Angewandte Chemie International Edition, 2015, 54(44):13058-13062
[17] 阚永春. 富锂锰基镍锰钴氧化物正极材料电压衰减机理的研究[D]. 合肥:中国科学技术大学, 2015 Kan Yongchun. Voltage fade mechanism study of lithium-manganese-rich nickel manganese cobalt oxides[D]. Hefei:University of Science and Technology of China, 2015(in Chinese)
[18] Bettge M, Li Y, Gallagher K, et al. Voltage fade of layered oxides:Its measurement and impact on energy density[J]. Journal of the Electrochemical Society, 2013, 160(11):A2046-A2055
[19] Susai F A, Sclar H, Shilina Y, et al. Horizons for Li-ion batteries relevant to electro-mobility:High-Specific-Energy cathodes and chemically active separators[J]. Advanced Materials, 2018, doi:10.1002/adma.201801348
[20] Hu E, Yu X, Lin R, et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nature Energy, 2018, 3(8):690-698
[21] Gu M, Belharouak I, Genc A, et al. Conflicting roles of nickel in controlling cathode performance in lithium ion batteries[J]. Nano Letters, 2012, 12(10):5186-5191
[22] Yu H, So Y, Kuwabara A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Letters, 2016, 16(5):2907-2915
[23] Manthiram A, Knight J C, Myung S T, et al. Nickel-Rich and lithium-rich layered oxide cathodes:progress and perspectives[J]. Advanced Energy Materials, 2016, doi:10.1002/aenm.201501010
[24] Croy J R, Kim D, Balasubramanian M, et al. Countering the voltage decay in high capacity xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) for Li+-ion batteries[J]. Journal of the electrochemical Society, 2012, 159(6):A781-A790
[25] Croy J R, Gallagher K G, Balasubramanian M, et al. Quantifying hysteresis and voltage fade in xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes as a function of Li2MnO3content[J]. Journal of the Electrochemical Society, 2014, 161(3):A318-A325
[26] Shi J, Zhang J, He M, et al. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(31):20138-20146
[27] 邱家欣, 江奇, 李欢, 等. 富锂锰基正极材料结构优化设计与电化学性能研究进展[J]. 功能材料, 2018, 49(3):3007-3012 Qiu Jiaxin, Jiang Qi, Li Huan, et al. Research progress of the structural optimization design and electrochemical performances on the Li-rich manganese-based cathode materials[J]. Journal of Functional Materials, 2018, 49(3):3007-3012(in Chinese)
[28] Yu H, Zhou H. High-Energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J]. The Journal of Physical Chemistry Letters, 2013, 4(8):1268-1280
[29] 王春雷, 蒋佑煊, 孔继周, 等. 富锂锰基正极材料性能改性的研究进展[J]. 电源技术, 2015, 39(12):2763-2767 Wang Chunlei, Jiang Youxuan, Kong Jizhou, et al. Advance in modification of xLi2MnO3·(1-x)LiMO2 cathode material[J]. Chinese Journal of Power Sources, 2015, 39(12):2763-2767(in Chinese)
[30] Xia L, Chen G. Non-Carbonate based electrolytes for high energy lithium-rich manganese-based positive electrodes with excellent cyclability[c]//In Meeting Abstracts. The Electrochemical Society, 2018
[31] Kim S, Nam K W, Lee S, et al. Direct observation of an anomalous spinel-to-layered phase transition mediated by crystal water intercalation[J]. Angewandte Chemie International Edition, 2015, 54(50):15094-15099
[32] Gu M, Belharouak I, Zheng J, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. ACS Nano, 2013, 7(1):760-767
[33] Ruther R E, Callender A F, Zhou H, et al. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes[J]. Journal of the Electrochemical Society, 2015, 162(1):A98-A102
[34] Jiang M, Key B, Meng Y, et al. Electrochemical and structural study of the layered, "Li-excess" lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2[J]. Chemistry of Materials, 2009, 21(13):2733-2745
[35] Mohanty D, Li J, Abraham D P, et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries:origin of the tetrahedral cations for spinel conversion[J]. Chemistry of Materials, 2014, 26(21):6272-6280
[36] Reed J, Ceder G, van der Ven A. Layered-to-Spinel phase transition in LxMnO2[J]. Electrochemical and Solid-State Letters, 2001, doi:10.1149/1.1368896
[37] Wu Y, Ma C, Yang J, et al. Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale[J]. Journal of Materials Chemistry A, 2015, 3(10):5385-5391
[38] Oh P, Ko M, Myeong S, et al. Cathode materials:A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Advanced Energy Materials, 2014, doi:10.1002/aenm.201470087
[39] Mohanty D, Kalnaus S, Meisner R A, et al. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J]. Journal of Power Sources, 2013, 229:239-248
[40] Hong J, Seo D H, Kim S W, et al. Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery[J]. Journal of Materials Chemistry, 2010, doi:10.1039/C0JM01971B
[41] Xu B, Fell C R, Chi M, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries:A joint experimental and theoretical study[J]. Energy & Environmental Science, 2011, doi:10.1039/C1EE01131F
[42] Assat G, Delacourt C, Corte D A D, et al. Editors' choice:Practical assessment of anionic redox in Li-rich layered oxide cathodes:A mixed blessing for high energy Li-ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(14):A2965-A2976
[43] Lee J, Kitchaev D A, Kwon D H, et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018, 556(7700):185-190
[44] Grimaud A, Hong W T, Shao-Horn Y, et al. Anionic redox processes for electrochemical devices[J]. Nature Materials, 2016, 15(2):121-126
[45] Gent W E, Lim K, Liang Y, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides[J]. Nature Communications, 2017, doi:10.1038/s41467-017-02041-x
[46] Qian D, Xu B, Chi M, et al. Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides[J]. Phys Chem Chem Phys, 2014, 16(28):14665-14668
[47] Dogan F, Long B R, Croy J R, et al. Re-Entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes[J]. Journal of the American Chemical Society, 2015, 137(6):2328-2335
[48] Wu Y, Ma C, Yang J, et al. Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale[J]. Journal of Materials Chemistry A, 2015, 3(10):5385-5391
[49] Lo W T, Yu C, Leggesse E G, et al. Understanding the role of dopant metal atoms on the structural and electronic properties of lithium-rich Li1.2Ni0.2Mn0.6O2 cathode material for lithium-ion batteries[J]. The Journal of Physical Chemistry Letters, 2019, 10(17):4842-4850
[50] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603
[51] Pradon A, Caldes M T, Petit P E, et al. Revisiting the relevance of using a constant voltage step to improve electrochemical performances of Li-rich lamellar oxides[J]. Journal of Power Sources, 2018, 380:158-163
[52] Zhang W, Liu Y, Wu J, et al. Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material with Al2O3/SiO2 composite for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(6):A863-A872
[53] Meng J, Ma Q, Xu L, et al. Improving cycling stability and suppressing voltage fade of layered lithium-rich cathode materials via SiO2 shell coating[J]. Ionics, 2019, 25(5):1979-1990
[54] Seteni B, Rapulenyane N, Ngila J C, et al. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries[J]. Journal of Power Sources, 2017, 353:210-220
[55] Kong J, Zhai H, Qian X, et al. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO[J]. Journal of Alloys and Compounds, 2017, 694:848-856
[56] Pan W, Peng W, Yan G, et al. Suppressing the voltage decay and enhancing the electrochemical performance of Li1.2Mn0.54Co0.13Ni0.13O2 by multifunctional Nb2O5Coating[J]. Energy Technology, 2018, 6(11):2139-2145
[57] Wu F, Li Q, Bao L, et al. Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials[J]. Electrochimica Acta, 2018, 260:986-993
[58] Liu X, Liu J, Huang T, et al. CaF2-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries[J]. Electrochimica Acta, 2013, 109:52-58
[59] Shuwei Sun, Yanfeng Yin, Ning Wan, et al. AlF3 surface-coated Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries[J]. Chemsuschem, 2015, 8(15):2544-2550
[60] Zheng J, Gu M, Xiao J, et al. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials[J]. Chemistry of Materials, 2014, 26(22):6320-6327
[61] Chen D, Zheng F, Li L, et al. Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance[J]. Journal of Power Sources, 2017, 341:147-155
[62] Wu F, Zhang X, Zhao T, et al. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(6):3773-3781
[63] Liu X, Su Q, Zhang C, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(1):255-263
[64] Zhou L, Wu Y, Huang J, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with Li+-conductive Li2SiO3 for lithium ion batteries[J]. Journal of Alloys and Compounds, 2017, 724:991-999
[65] Chong S, Chen Y, Yan W, et al. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries[J]. Journal of Power Sources, 2016, 332:230-239
[66] Yang M, Hu B, Geng F, et al. Mitigating voltage decay in high-capacity Li1.2Ni0.2Mn0.6O2 cathode material by surface K+ doping[J]. Electrochimica Acta, 2018, 291:278-286
[67] Nayak P K, Grinblat J, Levi M, et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries[J]. Advanced Energy Materials, 2016, doi:10.1002/aenm.201502398
[68] Chen S, Chen Z, Xia M, et al. Toward alleviating voltage decay by sodium substitution in lithium-rich manganese-based oxide cathodes[J]. ACS Applied Energy Materials, 2018, 1(8):4065-4074
[69] Chen G, An J, Meng Y, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries[J]. Nano Energy, 2019, 57:157-165
[70] Wu Y, Xie L, He X, et al. Electrochemical activation, voltage decay and hysteresis of Li-rich layered cathode probed by various cobalt content[J]. Electrochimica Acta, 2018, 265:115-120
[71] Zheng J, Gu M, Genc A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution[J]. Nano Letters, 2014, 14(5):2628-2635
[72] Yan J, Liu X, Li B. Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries[J]. RSC Adv, 2014, 4(108):63268-63284
[73] Nakahara K, Tabuchi M, Kuroshima S, et al. Drastically improved performances of graphite/Li1.26Mn0.52Fe0.22O2 cell with stepwise pre-cycling treatment that causes peroxide forming[J]. Journal of the Electrochemical Society, 2012, 159(9):A1398-A1404
[74] Kang S, Johnson C S, Vaughey J T, et al. The Effects of acid treatment on the electrochemical properties of 0.5Li2MnO3·0.5LiN0.44Co0.25Mn0.31O2 electrodes in lithium cells[J]. Journal of the Electrochemical Society, 2006, doi:10.1149/1.2194764
[75] Thackeray M M, Kang S, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, doi:10.1039/b720425h
[76] Zhang S, Gu H, Pan H, et al. A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201601066
|