[1] 隋玲玲, 李森, 张迪. 对苯醌合成方法的研究进展[J]. 辽宁化工, 2012, 41(11): 1190-1193 SUI Lingling, LI Sen, ZHANG Di. Research progress in synthetic methods of p-benzoquinone[J]. Liaoning Chemical Industry, 2012, 41(11): 1190-1193(in Chinese) [2] 时克勤. 一种回收软锰矿粉在对苯醌生产工艺中循环使用的方法: CN101081809A[P]. 2007-12-05 [3] REILLY E L. Oxidation of monohydroxy aryl compounds to 1, 4-quinones: US3987068[P]. 1976-10-19 [4] RADEL R J, SULLIVAN J M, HATFIELD J D. Catalytic oxidation of hydroquinone to quinone using molecular oxygen[J]. Industrial & Engineering Chemistry Product Research and Development, 1982, 21(4): 566-570 [5] LI X, LI X, TANG S, et al. High selectivity of benzene electrochemical oxidation to p-benzoquinone on modified PbO2 electrode[J]. Applied Surface Science, 2014, 311: 357-361 [6] XU J, JIANG Q, CHEN T, et al. Vanadia supported on mesoporous carbon nitride as a highly efficient catalyst for hydroxylation of benzene to phenol[J]. Catalysis Science & Technology, 2015, 5(3): 1504-1513 [7] BORAH P, MA X, NGUYEN K T, et al. A vanadyl complex grafted to periodic mesoporous organosilica: A green catalyst for selective hydroxylation of benzene to phenol[J]. Angewandte Chemie International Edition, 2012, 51(31): 7756-7761 [8] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, doi:10.1126/science.1230444 [9] ZHU Q, XU Q. Metal-organic framework composites[J]. Chemical Society Reviews, 2014, 43(16): 5468-5512 [10] WANG S, MCGUIRK C M, D'AQUINO A, et al. Metal-organic framework nanoparticles[J]. Advanced Materials, 2018, doi: 10.1002/adma.201800202 [11] LIU Y, LIU B, ZHOU Q, et al. Morphology effect of metal-organic framework HKUST-1 as a catalyst on benzene oxidation[J]. Chemical Research in Chinese Universities, 2017, 33(6): 971-978 [12] MARX S, KLEIST W, BAIKER A. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives[J]. Journal of Catalysis, 2011, 281(1): 76-87 [13] LIU Y, ZHANG T, WU W, et al. Water-mediated promotion of direct oxidation of benzene over the metal-organic framework HKUST-1[J]. RSC Advances, 2015, 5(69): 56020-56027 [14] PARIDA K M, RATH D. Structural properties and catalytic oxidation of benzene to phenol over CuO-impregnated mesoporous silica[J]. Applied Catalysis A: General, 2007, 321(2): 101-108 [15] KUBACKA A, WANG Z, SULIKOWSKI B, et al. Hydroxylation/oxidation of benzene over Cu-ZSM-5 systems: Optimization of the one-step route to phenol[J]. Journal of Catalysis, 2007, 250(1): 184-189 [16] WANNA W, RAMU R, JANMANCHI D, et al. An efficient and recyclable copper nano-catalyst for the selective oxidation of benzene to p-benzoquinone (p-BQ) using H2O2(aq) in CH3CN[J]. Journal of Catalysis, 2019, 370: 332-346 [17] CHEN Y, MU X, LESTER E, et al. High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity[J]. Progress in Natural Science: Materials International, 2018, 28(5): 584-589 [18] VEHRENBERG J, VEPSÄLÄINEN M, MACEDO D S, et al. Steady-state electrochemical synthesis of HKUST-1 with polarity reversal[J]. Microporous and Mesoporous Materials, 2020, doi:10.1016/j.micromeso.2020.110218 [19] ZHAO Y, DING H, ZHONG Q. Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture[J]. Applied Surface Science, 2013, 284: 138-144 [20] MOHAMMADNEJAD M, FAKHREFATEMI M. Synthesis of magnetic HKUST-1 metal-organic framework for efficient removal of mefenamic acid from water[J]. Journal of Molecular Structure, 2021, doi:10.1016/j.molstruc.2020.129041 [21] BHORIA N, BASINA G, POKHREL J, et al. Functionalization effects on HKUST-1 and HKUST-1/graphene oxide hybrid adsorbents for hydrogen sulfide removal[J]. Journal of Hazardous Materials, 2020, doi:10.1016/j.jhazmat.2020.122565 [22] BORFECCHIA E, MAURELLI S, GIANOLIO D, et al. Insights into adsorption of NH3 on HKUST-1 metal-organic framework: A multitechnique approach[J]. The Journal of Physical Chemistry C, 2012, 116(37): 19839-19850 [23] AZHAR M R, ABID H R, SUN H, et al. One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants[J]. Journal of Colloid and Interface Science, 2017, 490: 685-694 [24] SUN C, ZHU J, LV Y, et al. Dispersion, reduction and catalytic performance of CuO supported on ZrO2-doped TiO2 for NO removal by CO[J]. Applied Catalysis B: Environmental, 2011, 103(1/2): 206-220 [25] WANG F, GUO H, CHAI Y, et al. The controlled regulation of morphology and size of HKUST-1 by "coordination modulation method"[J]. Microporous and Mesoporous Materials, 2013, 173: 181-188 [26] VRTOVEC N, MAZAJ M, BUSCARINO G, et al. Structural and CO2 capture properties of ethylenediamine-modified HKUST-1 metal-organic framework[J]. Crystal Growth & Design, 2020, 20(8): 5455-5465 [27] QIU W, WANG Y, LI C, et al. Effect of activation temperature on catalytic performance of CuBTC for CO oxidation[J]. Chinese Journal of Catalysis, 2012, 33(4/5/6): 986-992 [28] GÖLTNER C G, SMARSLY B, BERTON B, et al. On the microporous nature of mesoporous molecular sieves[J]. Chemistry of Materials, 2001, 13(5): 1617-1624 [29] MISHRA S, BAL R, DEY R K. Heterogeneous recyclable copper oxide supported on activated red mud as an efficient and stable catalyst for the one pot hydroxylation of benzene to phenol[J]. Molecular Catalysis, 2021, doi:10.1016/j.mcat.2020.111310 [30] XU J, CHEN Y, HONG Y, et al. Direct catalytic hydroxylation of benzene to phenol catalyzed by vanadia supported on exfoliated graphitic carbon nitride[J]. Applied Catalysis A: General, 2018, 549: 31-39 [31] ELMETWALLY A E, ESHAQ G, YEHIA F Z, et al. Iron oxychloride as an efficient catalyst for selective hydroxylation of benzene to phenol[J]. ACS Catalysis, 2018, 8(11): 10668-10675 [32] DING G, WANG W, JIANG T, et al. Highly selective synthesis of phenol from benzene over a vanadium-doped graphitic carbon nitride catalyst[J]. ChemCatChem, 2013, 5(1): 192-200 [33] XUE B, CHEN Y, HONG Y, et al. Facile synthesis of Fe-containing graphitic carbon nitride materials and their catalytic application in direct hydroxylation of benzene to phenol[J]. Chinese Journal of Catalysis, 2018, 39(7): 1263-1271 [34] YEHIA F, ESHAQ G, ELMETWALLY A E. Enhancement of the working pH range for degradation of p-nitrophenol using Fe2+-aspartate and Fe2+-glutamate complexes as modified Fenton reagents[J]. Egyptian Journal of Petroleum, 2016, 25(2): 239-245
|