[1] KANG Z, YUAN Q, ZHAO L, et al. Study of the performance, simplification and characteristics of SNCR de-NOx in large-scale cyclone separator[J]. Applied Thermal Engineering, 2017, 123: 635-645
[2] LUO Zhaohui, WANG Enlu. Selective non-catalytic reduction technology and its denitrification systems used in CFB boilers[J]. Journal of Power Engineering, 2008, 28(3): 442-446(in Chinese) 罗朝晖, 王恩禄. 循环流化床锅炉选择性非催化还原技术及其脱硝系统的研究[J]. 动力工程, 2008, 28(3): 442-446
[3] GHOLAMI F, TOMAS M, GHOLAMI Z, et al. Technologies for the nitrogen oxides reduction from flue gas: A review[J]. The Science of the Total Environment, 2020, doi: 10.1016/j.scitotenv.2020.136712
[4] PRONOBIS M, WEJKOWSKI R, JAGODZIN'SKA K, et al. Simplified method for calculating SNCR system efficiency[J]. E3S Web of Conferences, 2017, doi: 10.1051/e3sconf/20171402003
[5] LEE G, SHON B, YOO J, et al. The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(4): 457-467
[6] OLIVA M, ALZUETA M, MILLERA A, et al. Theoretical study of the influence of mixing in the SNCR process. Comparison with pilot scale data[J]. Chemical Engineering Science, 2000, 55(22): 5321-5332
[7] WANG P, SHI Y, ZHANG L, et al. Effect of structural parameters on atomization characteristics and dust reduction performance of internal-mixing air-assisted atomizer nozzle[J]. Process Safety and Environmental Protection, 2019, 128: 316-328
[8] CAO Jianming, ZHU Hui, GUO Guangxiang, et al. Study on air assistant to improve quality of droplet atomization[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1): 56-60, 87(in Chinese) 曹建明, 朱辉, 郭广祥, 等. 空气助力改善液滴雾化质量的研究[J]. 实验流体力学, 2013, 27(1): 56-60, 87
[9] BAHR D. Gas turbine combustion—alternative fuels and emissions[J]. Journal of Engineering for Gas Turbines and Power, 2010, doi: 10.1115/1.4001927
[10] BAI Pengbo, XING Yuming, WANG Ze. Experiment study and simulation research for the atomization characteristics of the internal mixing nozzle[J]. Fluid Machinery, 2015, 43(2): 1-6(in Chinese) 白鹏博, 邢玉明, 王泽. 内混式喷嘴雾化特性的试验与仿真研究[J]. 流体机械, 2015, 43(2): 1-6
[11] HEDE P, BACH P, JENSEN A. Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review[J]. Chemical Engineering Science, 2008, 63(14): 3821-3842
[12] ROUDINI M, WOZNIAK G. Experimental investigation of spray characteristics of pre-filming air-blast atomizers[J]. Journal of Applied Fluid Mechanics, 2018, 11(6): 1455-1469
[13] WANG Pengfei, LI Yongjun, LIU Ronghua, et al. Spray characteristics and dust removal efficiency of internalmixing air atomizing nozzle[J]. Journal of China Coal Society, 2019, 44(5): 1570-1579(in Chinese) 王鹏飞, 李泳俊, 刘荣华, 等. 内混式空气雾化喷嘴雾化特性及降尘效率研究[J]. 煤炭学报, 2019, 44(5): 1570-1579
[14] WANG Pengfei, TAN Xuanhao, LIU Ronghua, et al. Influence of outlet diameter on atomization characteristics and dust removal properties of internal-mixing air atomizing nozzle[J]. Journal of China Coal Society, 2018, 43(10): 2823-2831(in Chinese) 王鹏飞, 谭烜昊, 刘荣华, 等. 出口直径对内混式空气雾化喷嘴雾化特性及降尘性能的影响[J]. 煤炭学报, 2018, 43(10): 2823-2831
[15] LI Xi, YUAN Ruibo, QIAN Junbing, et al. Distribution characteristics of particle size of tobacco casing atomized by external-mixing air atomizing nozzle[J]. Tobacco Science & Technology, 2019, 52(11): 78-86(in Chinese) 黎西, 袁锐波, 钱俊兵, 等. 片烟加料外混式空气雾化喷嘴雾化粒径分布特性[J]. 烟草科技, 2019, 52(11): 78-86
[16] ROTA R, ANTOS D, ZANOELO É F, et al. Experimental and modeling analysis of the NOx out process[J]. Chemical Engineering Science, 2002, 57(1): 27-38
[17] JAVED M T, IRFAN N, GIBBS B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction[J]. Journal of Environmental Management, 2007, 83(3): 251-289
[18] KIM H S, SHIN M S, JANG D S, et al. Numerical study of SNCR application to a full-scale stoker incinerator at Daejon 4th industrial complex[J]. Applied Thermal Engineering, 2004, 24(14/15): 2117-2129
[19] HAN X, WEI X, SCHNELL U, et al. Detailed modeling of hybrid reburn/SNCR processes for NOx reduction in coal-fired furnaces[J]. Combustion and Flame, 2003, 132(3): 374-386
[20] XIA Z, LI J, WU T, et al. CFD simulation of MSW combustion and SNCR in a commercial incinerator[J]. Waste Management, 2014, 34(9): 1609-1618
[21] BROUWER J, HEAP M P, SMITH D W. A model for prediction of selective noncatalytic reduction of nitrogen oxide[J]. Symposium (International) on Combustion, 1996, 26(2): 2117-2124
[22] BLEJCHA? T, KONVI?KA J, von der HEIDE B, et al. High temperature modification of SNCR technology and its impact on NOx removal process[J]. EPJ Web of Conferences, 2018, doi: 10.1051/epjconf/201818002009
[23] BALETA J, MIKUL?I? H, VUJANOVI? M, et al. Numerical simulation of urea based selective non-catalytic reduction de NOx process for industrial applications[J]. Energy Conversion and Management, 2016, 125: 59-69
[24] KANG T H, NGUYEN T D B, LIM Y I, et al. Computational fluid dynamics(CFD) simulation and in situ experimental validation for the urea-based selective non-catalytic reduction(SNCR) process in a municipal incinerator[J]. Korean Chemical Engineering Research, 2009, 47(5): 630-638
[25] GARBACZ P, WEJKOWSKI R. Numerical research on the SNCR method in a grate boiler equipped with the innovative FJBS system[J]. Energy, 2020, doi: 10.1016/j.energy.2020.118240
[26] LI X, DU J, WANG L, et al. Effects of different nozzle materials on atomization results via CFD simulation[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 362-368
[27] HAN H, WANG P, LI Y, et al. Effect of water supply pressure on atomization characteristics and dust-reduction efficiency of internal mixing air atomizing nozzle[J]. Advanced Powder Technology, 2020, 31(1): 252-268
[28] AKHLAGHI M, MOHAMMADI V, NOURI N M, et al. Multi-Fluid VoF model assessment to simulate the horizontal air-water intermittent flow[J]. Chemical Engineering Research and Design, 2019, 152: 48-59
[29] REITZ R D. Modeling of atomization on processes in high-pressure vaporizing sprays[J]. Atomization and Spray Technology, 1987, 3(4): 309-337
[30] LU K, JIN Y, CHEN Y, et al. Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems[J]. Mechanical Systems and Signal Processing, 2019, 123: 264-297
|