[1] Abdul-Razzak A, Shoukri M, Chan A M C.Two-Phase flow regimes during the rewetting and refilling of hot horizontal tubes[J]. Exp Therm Fluid Sci, 1990, 3(3): 330-337
[2] Cha J, Ahn Y, Kim M. Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes[J].Flow Meas Instrum, 2002, 12(5/6): 329-339
[3] Jassim E W, Newell T A,Chato J C. Prediction of two-phase condensation in horizontal tubes using probabilistic flow regime maps[J]. Int J Heat Mass Transfer, 2008, 51(3/4): 485-496
[4] Triplett K A,Ghiaasiaan S M,Abdel-Khalik S I,et al. Gas-liquid two-phase flow in microchannels Part I: Two-phase flow patterns[J].Int J Multiphase Flow, 1999, 25(3): 377-394
[5] Akbar M K, Plummer D A, Ghiaasiaan S M. On gas-liquid two-phase flow regimes in microchannels[J].Int J Multiphase Flow, 2003, 29(5): 855-865
[6] Thulasidas T C, Abraham M A, Cerro R L. Flow patterns in liquid slugs during bubble-train flow inside capillaries[J]. Chem Eng Sci, 1997, 52(17): 2 947-2 962
[7] Salman W, Gavriilidis A,Angeli P. A model for predicting axial mixing during gas-liquid Taylor flow in microchannels at low Bodensteinnumbers[J]. Chem Eng J, 2004, 101(1/3):391-396
[8] Adeosun J T,Lawal A. Numerical and experimental studies of mixing characteristics in a T-junction microchannel using residence-time distribution[J]. Chem Eng Sci, 2009, 64(10):2 422-2 432
[9] Gupta R, Fletcher D F, Haynes B S.On the CFD modelling of Taylor flow in microchannels[J]. Chem Eng Sci, 2009, 64(12): 2 941-2 950
[10] Aubin J, Ferrando M,Jiricny V. Current methods for characterising mixing and flow in microchannels[J]. Chem Eng Sci, 2010, 65(6): 2 065-2 093
[11] Giavendoni M D, Saita F A. The rear meniscus of a long bubble steadily displacing a Newtonian liquid in a capillary tube[J]. Phys Fluids,1999, 11 (4): 786-794
[12] van Baten J M, Krishna R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries[J]. Chem Eng Sci, 2004, 59(12): 2 535-2 545
[13] Irandoust S,Andersson B.Simulation of flow and mass transfer in Taylor flow through a capillary[J].Comput Chem Eng,1989, 13(4/5): 519-526
[14] Qian D,Lawal A.Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J].Chem Eng Sci, 2006,61(23): 7 609-7 625
[15] Olsson E,Kreiss G. A conservative level set method for two phase flow [J]. J Comput Phys, 2005, 210(1): 225-246
[16] Yue P, Zhou C, Feng J J,et al. Phase-Field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing[J]. J Comput Phys, 2006, 219(1): 47-67
[17] Yu Z, Hemminger O, Fan L. Experiment and lattice Boltzmann simulation of two-phase gas-liquid flows in microchannels[J]. Chem Eng Sci,2007, 62(24): 7 172-7 183
[18] Kumar V, Vashisth S, Hoarau Y, et al. Slug flow in curved microreactors: Hydrodynamic study[J]. Chem Eng Sci, 2007, 62(24): 7 494-7 504
[19] Kashid M N, Agar D W. Hydrodynamics of liquid-liquid slug flow capillary microreactor: Flow regimes, slug size and pressure drop[J]. Chem Eng J, 2007, 131(1): 1-13
[20] Hazel A L, Heil M. The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section[J]. J Fluid Mech, 2002, 470: 91-114
[21] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. J Comput Phys, 1992, 100(2): 335-354
[22] Han Y, Shikazono N, Kasagi N. Measurement of liquid film thickness in a micro parallel channel with interferometer and laser focus displacement meter[J]. Int J Multiphase Flow, 2011, 37(1): 36-45
[23] Bretherton F P. The motion of long bubbles in tubes[J]. J Fluid Mech, 1961, 10(2): 166-188
[24] Han Y, Shikazono N. Measurement of the liquid film thickness in micro tube slug flow[J]. Int J Heat Fluid Flow, 2009, 30(5): 842-853
[25] Warnier M J F, Rebrov E V, De Croon M, et al. Gas hold-up and liquid film thickness in Taylor flow in rectangular microchannels[J]. Chem Eng J, 2008, 135: S153-S158
[26] Kreutzer M T, Kapteijn F, Moulijn J A, et al. Inertial and interfacial effects on pressure drop of Taylor flow in capillaries[J]. AIChE J, 2005, 51(9): 2 428-2 440
[27] Santos R M, Kawaji M. Numerical modeling and experimental investigation of gas-liquid slug formation in a microchannel T-junction[J]. Int J Multiphase Flow, 2010, 36(4): 314-323
[28] Berěiě G, Pintar A. The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries[J]. Chem Eng Sci, 1997, 52(21): 3 709-3 719
[29] Vandu C O, Liu H, Krishna R. Mass transfer from Taylor bubbles rising in single capillaries[J]. Chem Eng Sci, 2005, 60(22): 6 430-6 437
[30] Heiszwolf J J, Kreutzer M T, van den Eijnden M G, et al. Gas-Liquid mass transfer of aqueous Taylor flow in monoliths[J]. Catal Today, 2001, 69(1): 51-55
[31] Mantle M D, Sederman A J, Gladden L F, et al. Dynamic MRI visualization of two-phase flow in a ceramic monolith [J]. AIChE J, 2002, 48(4): 909-912
[32] Kreutzer M T, Eijnden M G, Kapteijn F, et al. The pressure drop experiment to determine slug lengths in multiphase monoliths[J]. Catal Today, 2005, 105(3): 667-672
[33] Laborie S, Cabassud C, Durand-Bourlier L, et al. Characterisation of gas-liquid two-phase flow inside capillaries[J]. Chem Eng Sci, 1999, 54(23): 5 723-5 735
[34] Sobieszuk P, Cygański P, Pohorecki R. Bubble lengths in the gas-liquid Taylor flow in microchannels[J]. Chem Eng Res Des, 2010, 88(3): 263-269
|