[1] SHIN D Y, SUNG K W, AHN H J. Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics[J]. Applied Surface Science, 2019, 478:499-504 [2] LI Y, NI B, LI X, et al. High-performance Na-ion storage of S-doped porous carbon derived from conjugated microporous polymers[J]. Nano-Micro Letters, 2019, doi:10.1007/s40820-019-0291-z [3] ZHU J, DIAO T, WANG W, et al. Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition[J]. Applied Catalysis B:Environmental, 2017, 219:92-100 [4] ZHAO J, LAI H, LYU Z, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance[J]. Advanced Materials (Deerfield Beach, Fla), 2015, 27(23):3541-3545 [5] SHI Q, ZHANG R, LU Y, et al. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor[J]. Carbon, 2015, 84:335-346 [6] CHANG B, SHI W, YIN H, et al. Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO2 capture[J]. Chemical Engineering Journal, 2019, 358:1507-1518 [7] HAN J, ZHANG L, ZHAO B. The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption[J]. Industrial Crops and Products, 2019, 128:290-297 [8] LEE K S, PARK M, PARK C W, et al. Sustainable fabrication of nitrogen activated carbon from chlorella vulgaris for energy storage devices[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 529:102-106 [9] SHEN F, ZHU L QI X. Nitrogen self-doped hierarchical porous carbon from myriophyllum aquaticum for supercapacitor electrode[J]. ChemistrySelect, 2018, 3(40):11350-11356 [10] XU J, SHI J, CUI H, et al. Preparation of nitrogen doped carbon from tree leaves as efficient CO2 adsorbent[J]. Chemical Physics Letters, 2018, 711:107-112 [11] BALOU S, BABAK S E, PRIYE A. Synergistic effect of nitrogen doping and ultra-microporosity on the performance of biomass and microalgae-derived activated carbons for CO2 capture[J]. ACS Applied Materials & Interfaces, 2020, 12(38):42711-42722 [12] FENG G, QU J, ZHAO Z, et al. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors[J]. Electrochimica Acta, 2016, 190:1134-1141 [13] LIU Y, ZHAO Y, LI K, et al. Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells[J]. Journal of Power Sources, 2018, 378:1-9 [14] LUO W, WANG B, HERON C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J]. Nano Letters, 2014, 14(4):2225-2229 [15] SEVILLA M, VALLE-VIGÓN P, FUERTES A B. N-doped polypyrrole-based porous carbons for CO2 capture[J]. Advanced Functional Materials, 2011, 21(14):2781-2787 [16] DUAN J, FAN H, SHEN W. Nitrogen-doped carbon materials prepared from polyurethane foams[J]. ChemistrySelect, 2016, 1(12):3204-3207 [17] XU Z, CHEN J, ZHANG X. Template-free preparation of nitrogen-doped activated carbon with porous architecture for high-performance supercapacitors[J]. Microporous and Mesoporous Materials, 2019, 276:280-291 [18] 王言, 邱一洋, 李自航, 等. 煤质柱状活性炭的尿素改性及其乙炔氢氯化性能[J]. 化学反应工程与工艺, 2017, 33(4):298-304, 311 WANG Yan, QIU Yiyang, LI Zihang, et al. Urea modification of columnar coal based activated carbon and its acetylene hydrochlorination performance[J]. Chemical Reaction Engineering and Technology, 2017, 33(4):298-304, 311(in Chinese) [19] CHEN J, LIN Y, LIU J, et al. Outstanding supercapacitor performance of nitrogen-doped activated carbon derived from shaddock peel[J]. Journal of Energy Storage, 2021, doi:10.1016/j.est.2021.102640 [20] CUI H, XU J, SHI J, et al. Facile fabrication of nitrogen doped carbon from filter paper for CO2 adsorption[J]. Energy, 2019, doi:10.1016/j.energy.2019.115936 [21] SHI S, OCHEDI F O, YU J, et al. Porous biochars derived from microalgae pyrolysis for CO2 adsorption[J]. Energy & Fuels, 2021, 35(9):7646-7656 [22] LI Z, LIANG Q, YANG C, et al. Convenient preparation of nitrogen-doped activated carbon from Macadamia nutshell and its application in supercapacitor[J]. Journal of Materials Science:Materials in Electronics, 2017, 28(18):13880-13887 [23] MIRZAEIAN M, ABBAS Q, HUNT M R C, et al. Pseudocapacitive effect of carbons doped with different functional groups as electrode materials for electrochemical capacitors[J]. Energies, 2020, doi:10.3390/en13215577 [24] SAHOO M K, RAO G R. A high energy flexible symmetric supercapacitor fabricated using N-doped activated carbon derived from palm flowers[J]. Nanoscale Advances, 2021, 3(18):5417-5429 [25] MORAIS R G, REY-RAAP N, FIGUEIREDO J L, et al. Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction[J]. Beilstein Journal of Nanotechnology, 2019, 10:1089-1102 [26] LU Q, XU Y, MU S, et al. The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes[J]. New Carbon Materials, 2017, 32(5):442-450 [27] VOLPERTS A, PLAVNIECE A, DOBELE G, et al. Biomass based activated carbons for fuel cells[J]. Renewable Energy, 2019, 141:40-45 [28] YUAN Y, SUN Y, FENG Z, et al. Nitrogen-doped hierarchical porous activated carbon derived from paddy for high-performance supercapacitors[J]. Materials (Basel, Switzerland), 2021, doi:10.3390/ma14020318 [29] 孙康, 蒋剑春, 卢辛成, 等. 表面掺氮活性炭的制备及其甲醛吸附性能研究[J]. 林产化学与工业, 2014, 34(4):77-82 SUN Kang, JIANG Jianchun, LU Xincheng, et al. Preparation of N-doped activated carbon and effects of N-doping on formaldehyde adsorption[J]. Chemistry and Industry of Forest Products, 2014, 34(4):77-82(in Chinese) [30] GENG Z, XIAO Q, LV H, et al. One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective CO2 capture[J]. Scientific Reports, 2016, doi:10.1038/srep30049 [31] CHEN H, LIU D, SHEN Z, et al. Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials[J]. Electrochimica Acta, 2015, 180:241-251 [32] TANG X, LI X. Preparation and catalytic properties of ultra-low mercury/nitrogen-doped activated carbon composite catalyst[J]. China Plastics Industry, 2021, 49(2):19-23,67 [33] GUO D, XIN R, WANG Y, et al. N-doped carbons with hierarchically micro- and mesoporous structure derived from sawdust for high performance supercapacitors[J]. Microporous and Mesoporous Materials, 2019, 279:323-333 [34] 盛斐. 高比表面积氮掺杂壳聚糖基活性炭的制备与吸附性能研究[D]. 天津:天津大学, 2020 SHENG Fei. High surface area and N-doped activated carbons prepared from chitosan and their adsorption properties[D]. Tianjin:Tianjin University, 2020 (in Chinese) [35] SU W, ZHANG A, SUN Y, et al. Adsorption properties of C2H4 and C3H6 on 11 adsorbents[J]. Journal of Chemical & Engineering Data, 2017, 62(1):417-421 [36] 苏伟, 冉梦, 张爱, 等. S-掺杂微孔活性炭的制备及其吸附性能研究[J]. 化工新型材料, 2018, 46(4):161-164 SU Wei, RAN Meng, ZHANG Ai, et al. Preparation of sulfur-doped microporous carbon and its adsorption property[J]. New Chemical Materials, 2018, 46(4):161-164(in Chinese) [37] SCHABER P, COLSON J, HIGGINS S, et al. Thermal decomposition (pyrolysis) of urea in an open reaction vessel[J]. Thermochimica Acta, 2004, 424(1/2):131-142 [38] 喻小伟, 李宇春, 蒋娅, 等. 尿素热解研究及其在脱硝中的应用[J]. 热力发电, 2012, 41(1):1-5 YU Xiaowei, LI Yuchun, JIANG Ya, et al. Study on pyrolysis of urea and its application in denitrifcation[J]. Thermal Power Generation, 2012, 41(1):1-5(in Chinese) [39] WU Q, LI W, LIU S, et al. Hydrothermal synthesis of N-doped spherical carbon from carboxymethylcellulose for CO2 capture[J]. Applied Surface Science, 2016, 369:101-107 [40] SÁNCHEZ-SÁNCHEZ A, SUÁREZ-GARCÍA F, MARTÍNEZ-ALONSO A, et al. Influence of porous texture and surface chemistry on the CO2 adsorption capacity of porous carbons:Acidic and basic site interactions[J]. ACS Applied Materials & Interfaces, 2014, 6(23):21237-21247 [41] BAI R, YANG M, HU G, et al. A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke[J]. Carbon, 2015, 81:465-473 [42] FAN X, ZHANG L, ZHANG G, et al. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture[J]. Carbon, 2013, 61:423-430 [43] 于双喜. 氮掺杂植物基活性炭材料结构及其吸附性能的研究[D]. 北京:北京化工大学, 2010 YU Shuangxi. The adsorption and structure of nitrogen-doped plant-based activated carbon[D]. Beijing:Beijing University of Chemical Technology, 2010 (in Chinese) [44] SONG J, SHEN W, WANG J, et al. Superior carbon-based CO2 adsorbents prepared from poplar anthers[J]. Carbon, 2014, 69:255-263 [45] LIU L, DENG Q, MA T, et al. Ordered mesoporous carbons:Citric acid-catalyzed synthesis, nitrogen doping and CO2 capture[J]. Journal of Materials Chemistry, 2011, 21(40):16001-16009 [46] 陈有双, 唐忠锋, 张培培, 等. 三聚氰胺结构和热力学性质的密度泛函理论研究[J]. 分子科学学报, 2009, 25(6):418-422 CHEN Youshuang, TANG Zhongfeng, ZHANG Peipei, et al. Density functional theory study on structure and thermodynamic properties of melamine[J]. Journal of Molecular Science, 2009, 25(6):418-422(in Chinese) [47] SHAO L, LIU M, SANG Y, et al. Nitrogen-doped ultrahigh microporous carbons derived from two nitrogen-containing post-cross-linked polymers for efficient CO2 capture[J]. Journal of Chemical & Engineering Data, 2020, 65(4):2238-2250 [48] FAN Y, WANG Y, KANG D, et al. Oil-tea shell derived N-doped porous carbon for selective separation of CO2, CH4, and N2[J]. Science of Advanced Materials, 2019, 11(8):1146-1155 [49] XING W, LIU C, ZHOU Z, et al. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction[J]. Energy & Environmental Science, 2012, 5(6):7323-7327
|