[1] 廖世勇,蒋德明. 柴油机排气后处理技术的研究进展及存在的问题[J]. 内燃机,2002:3-6 Liao Shiyong, Jiang Deming. The development and problems in after treatment technology of diesel engine emissions[J]. Internal Combustion Engines, 2002:3-6(in Chinese)
[2] 王虹,赵震,徐春明,等. LaBO3钙钛矿型复合氧化物同时消除柴油机尾气炭颗粒和NO[J]. 催化学报,2008:649-654 Wang Hong, Zhao Zhen, Xu Chunming, et al. Simultaneous removal of soot particals and NO from diesel engines over LaBO3 perovskite-type oxides[J]. Chinese Journal of Catalysis, 2008:649-654(in Chinese)
[3] Schejbal M, Štěpánek J, Marek M, et al. Modelling of soot oxidation by NO2 in various types of diesel particulate filters[J]. Fuel, 2010, 89(9):2365-2375
[4] Twigg M V. Progress and future challenges in controlling automotive exhaust gas emissions[J]. Applied Catalysis B:Environmental, 2007, 70(1):2-15
[5] Oi-Uchisawa J, Obuchi A, Enomoto R, et al. Oxidation of carbon black over various Pt/MOx/SiC catalysts[J]. Applied Catalysis B:Environmental, 2001, 32(4):257-268
[6] Wei Y, Zhao Z, Liu J, et al. Design and synthesis of 3D ordered macroporous CeO(2)-supported Pt@CeO(2-delta) core-shell nanoparticle materials for enhanced catalytic activity of soot oxidation[J]. Small, 2013, 9(23):3957-3963
[7] Wei Y, Liu J, Zhao Z, et al. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation[J]. Angewandte Chemie International Edition, 2011, 50(10):2326-2329
[8] Yu X, Li J, Wei Y, et al. Three-Dimensionally ordered macroporous MnxCe1-xOδ and Pt/Mn0.5Ce0.5Oδ catalysts:Synthesis and catalytic performance for soot oxidation[J]. Industrial & Engineering Chemistry Research, 2014, 53(23):9653-9664
[9] Yu Y, Ren J, Liu D, et al. Domain-Confined multiple collision enhanced catalytic soot combustion over a Fe2O3/TiO2-nanotube array catalyst prepared by light-assisted cyclic magnetic adsorption[J]. ACS Catalysis, 2014, 4(3):934-941
[10] Yu Y, Meng M, Dai F. The monolithic lawn-like CuO-based nanorods array used for diesel soot combustion under gravitational contact mode[J]. Nanoscale, 2013, 5(3):904-909
[11] Cao C, Zhang Y, Liu D, et al. Gravity-Driven multiple collision-enhanced catalytic soot combustion over a space-open array catalyst consisting of ultrathin ceria nanobelts[J]. Small, 2015, 11(30):3659-3664
[12] Liu S, Wu X, Weng D, et al. Roles of acid sites on Pt/H-ZSM5 catalyst in catalytic oxidation of diesel soot[J]. ACS Catalysis, 2015, 5(2):909-919
[13] Zhang H, Gu F, Liu Q, et al. MnOx-CeO2 supported on a three-dimensional and networked SBA-15 monolith for NOx-assisted soot combustion[J]. RSC Advances, 2014, 4(29):14879
[14] Murugan B and Ramaswamy A V. Chemical states and redox properties of Mn/CeO2-TiO2 nanocomposites prepared by solution combustion route[J]. Journal of Physical and Chemstry C. 2008, 112(51):20429-20442
[15] Shen B, Wang F, Liu T. Homogeneous MnOx-CeO2 pellets prepared by a one-step hydrolysis process for low-temperature NH3-SCR[J]. Powder Technology, 2014, 253:152-157
[16] Reddy B M, Khan A, Yamada Y, et al. Surface characterization of CeO2/SiO2 and V2O5/CeO2/SiO2 catalysts by Raman, XPS, and other techniques[J]. The Journal of Physical Chemistry B, 2002, 106(42):10964-10972
[17] Liu Z, Zhu J, Li J, et al. Novel Mn-Ce-Ti mixed-mxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS applied materials & interfaces, 2014, 6(16):14500-14508
[18] Tang X, Li Y, Huang X, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature[J]. Applied Catalysis B:Environmental, 2006, 62:265-273
[19] Guo X, Meng M, Dai F, et al. NOx-Assisted soot combustion over dually substituted perovskite catalysts La1-xKxCo1-yPdyO3-δ[J]. Applied Catalysis B:Environmental, 2013, 142-143:278-289
|