[1] 中华人民共和国卫生部, 中国国家标准化管理委员会. 中华人民共和国国家标准:生活饮用水卫生标准GB 5749-2006[S]. 北京:中国标准出版社, 2007 Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China:Standards for drinking water quality. GB 5749-2006[S]. Beijing:Standards Press of China, 2007(in Chinese)
[2] Silva A M, Cunha E C, Silva F D R, et al. Treatment of high-manganese mine water with limestone and sodium carbonate[J]. Journal of Cleaner Production, 2012, 29/30:11-19
[3] 李继云, 徐冰峰, 黄兆龙, 等. 核桃壳对二价锰离子(Mn2+)的吸附性能[J]. 净水技术, 2012, 31(4):98-101 Li Jiyun, Xu Bingfeng, Huang Zhaolong, et al. Performance of adsorption for manganous ions(Mn2+) by walnut shells[J]. Water Purification Technology, 2012, 31(4):98-101(in Chinese)
[4] Sharma Y C, Uma, Singh S N, et al. Fly ash for the removal of Mn(Ⅱ) from aqueous solutions and wastewaters[J]. Chemical Engineering Journal, 2007, 132(1/2/3):319-323
[5] Vázquez-Ortega A, Fein J B. Thermodynamic modeling of Mn(Ⅱ) adsorption onto manganese oxidizing bacteria[J]. Chemical Geology, 2017, 464:147-154
[6] 姚万军, 方冰. 拜耳法赤泥综合利用研究现状[J]. 无机盐工业, 2010, 42(12):9-11 Yao Wanjun, Fang Bing. Present research status of comprehensive utilization of red mud from Bayer process[J]. Inorganic Chemicals Industry, 2010, 42(12):9-11(in Chinese)
[7] Sahu R C, Patel R, Ray B C. Adsorption of Zn(Ⅱ) on activated red mud:Neutralized by CO2[J]. Desalination, 2011, 266(1/2/3):93-97
[8] Milenkovi? A, Smi?iklas I, Bundaleski N, et al. The role of different minerals from red mud assemblage in Co(Ⅱ) sorption mechanism[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 508:8-20
[9] 陈红亮, 赵荣飞, 李琳, 等. 拜耳法赤泥吸附废水中Mn2+和NH4+的研究[J]. 环境科学与技术, 2015, 38(6):161-166,171 Chen Hongliang, Zhao Rongfei, Li Lin, et al. Studies of adsorbing Mn2+ and NH4+ from wastewater using bayer red mud[J]. Environmental Science & Technology, 2015, 38(6):161-166,171(in Chinese)
[10] Zhao Y, Yue Q, Li Q, et al. Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution[J]. Chemical Engineering Journal, 2012, 193/194:161-168
[11] 李倩, 张平, 彭佩钦, 等. 海藻酸钠联合玉米秸秆炭包埋固定蜡样芽孢杆菌的条件优化[J]. 环境化学, 2019, 38(1):106-113 Li Qian, Zhang Ping, Peng Peiqin, et al. Optimization of immobilization conditions of Bacillus cereus using sodium alginate combined with corn straw biochar[J]. Environmental Chemistry, 2019, 38(1):106-113(in Chinese)
[12] 张书武, 刘昌俊, 栾兆坤, 等. 铁改性赤泥吸附剂的制备及其除砷性能研究[J]. 环境科学学报, 2007, 27(12):1972-1977 Zhang Shuwu, Liu Changjun, Luan Zhaokun, et al. Preparation of Fe modified red mud and its adsorption characteristics of arsenate[J]. Acta Scientiae Circumstantiae, 2007, 27(12):1972-1977(in Chinese)
[13] 肖利萍, 白际驰, 裴青煌. 赤泥复合颗粒去除Fe2+、Mn2+的最佳制备条件探究[J]. 非金属矿, 2016, 39(1):37-39 Xiao Liping, Bai Jichi, Pei Qinghuang. The best preparation conditions of removaling Fe2+, Mn2+ by the red mud composite particles[J]. Non-Metallic Mines, 2016, 39(1):37-39(in Chinese)
[14] Zhang L, Zhang H, Tian Y, et al. Adsorption of methylene blue from aqueous solutions onto sintering process red mud[J]. Desalination and Water Treatment, 2012, 47(1/2/3):31-41
[15] 赵雅琴. 新型赤泥颗粒吸附材料的制备、表征及其对水体中磷的去除性能研究[D]. 济南:山东大学, 2013 Zhao Yaqin. Preparation and characterization of a novel red mud granular adsorbent for phosphate removal[D]. Jinan:Shandong University, 2013(in Chinese)
[16] Hajjaji W, Pullar R, Labrincha J, et al. Aqueous acid orange 7 dye removal by clay and red mud mixes[J]. Applied Clay Science, 2016, 126:197-206
[17] Xie W, Zhou F, Bi X, et al. Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions[J]. Journal of Hazardous Materials, 2018, 358:441-449
[18] Guzmán-Carrillo H R, Pérez J M, Romero M. Crystallisation of nepheline-based glass frits through fast-firing process[J]. Journal of Non-Crystalline Solids, 2017, 470:53-60
[19] López-Salinas E, Toledo-Antonio J A, Manríquez M E, et al. Synthesis and catalytic activity of chrysotile-type magnesium silicate nanotubes using various silicate sources[J]. Microporous and Mesoporous Materials, 2019, 274:176-182
[20] Acar I, Acisli O. Mechano-chemical surface modification of calcite by wet-stirred ball milling[J]. Applied Surface Science, 2018, 457:208-213
[21] Deihimi N, Irannajad M, Rezai B. Characterization studies of red mud modification processes as adsorbent for enhancing ferricyanide removal[J]. Journal of Environmental Management, 2018, 206:266-275
[22] Markovic S, Dondur V, Dimitrijevic R. FTIR spectroscopy of framework aluminosilicate structures:Carnegieite and pure sodium nepheline[J]. Journal of Molecular Structure, 2003, 654(1/2/3):223-234
[23] Xie J, He Y, Tang J, et al. Pore size distribution dependent controlling selective degradation of binary dye effluent[J]. Journal of Molecular Liquids, 2018, 250:388-395
[24] Feng D, Li X, Wang X, et al. Water adsorption and its impact on the pore structure characteristics of shale clay[J]. Applied Clay Science, 2018, 155:126-138
[25] 黄河, 李勇超, 徐政, 等. 赤泥吸附废水中Mn2+的机理分析研究[J]. 硅酸盐通报, 2019, 38(9):2801-2807, 2813 Huang He, Li Yongchao, Xu Zheng, et al. Removal of Mn2+ from wastewater by red mud and its mechanism analysis[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(9):2801-2807, 2813(in Chinese)
[26] Jovanovic M, Arcon I, Kovac J, et al. Removal of manganese in batch and fluidized bed systems using beads of zeolite a as adsorbent[J]. Microporous and Mesoporous Materials, 2016, 226:378-385
[27] Liu Y, Bai J, Duan H, et al. Static magnetic field-assisted synthesis of Fe3O4 nanoparticles and their adsorption of Mn(Ⅱ) in aqueous solution[J]. Chinese Journal of Chemical Engineering, 2017, 25(1):32-36
[28] Sun Q, Cui P, Fan T, et al. Effects of Fe(Ⅱ) on Cd(Ⅱ) immobilization by Mn(Ⅲ)-rich δ-MnO2[J]. Chemical Engineering Journal, 2018, 353:167-175
[29] Lan S, Wang X, Xiang Q, et al. Mechanisms of Mn(Ⅱ) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr)oxides[J]. Geochimica et Cosmochimica Acta, 2017, 211:79-96
[30] 杨唐仪. SA-CA-PAC生物微胶囊的工艺优化及其在生物流化床中的应用[D]. 江苏镇江:江苏大学, 2011 Yang Tangyi. Process optimization of SA-CA-PCA biological microcapsules and its application in biological fluidized bed[D]. Jiangsu Zhenjiang:Jiangsu University, 2011(in Chinese)
[31] Lagoa R, Rodrigues J R. Kinetic analysis of metal uptake by dry and gel alginate particles[J]. Biochemical Engineering Journal, 2009, 46(3):320-326
[32] Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications[J]. Materials (Basel, Switzerland), 2013, 6(4):1285-1309
[33] Papageorgiou S K, Kouvelos E P, Katsaros F K. Calcium alginate beads from Laminaria digitata for the removal of Cu2+ and Cd2+ from dilute aqueous metal solutions[J]. Desalination, 2008, 224(1/2/3):293-306
[34] Lim S F, Zheng Y, Zou S, et al. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study[J]. Environmental Science & Technology, 2008, 42(7):2551-2556
[35] 高志敏. 海藻酸钠基复合吸附材料的制备及对重金属离子的吸附研究[D]. 济南:山东建筑大学, 2016 Gao Zhimin. Preparation of sodium alginate-based composite adsorption material and its adsorption of heavy metal ions[D]. Jinan:Shandong Jianzhu University, 2016(in Chinese)
[36] 王鑫浩, 范芳, 张洛红, 等. 锰氧化物对环境中重金属吸附及影响因素研究进展[J]. 应用化工, 2018, 47(1):155-159,164 Wang Xinhao, Fan Fang, Zhang Luohong, et al. Research progress on adsorption of heavy metals by manganese oxides and its influencing factors[J]. Applied Chemical Industry, 2018, 47(1):155-159,164(in Chinese)
[37] 孟佑婷, 郑袁明, 张丽梅, 等. 环境中生物氧化锰的形成机制及其与重金属离子的相互作用[J]. 环境科学, 2009, 30(2):574-582 Meng Youting, Zheng Yuanming, Zhang Limei, et al. Formation and reactions of biogenic manganese oxides with heavy metals in environment[J]. Environmental Science, 2009, 30(2):574-582(in Chinese)
[38] Vries D, Bertelkamp C, Schoonenberg K F, et al. Iron and manganese removal:Recent advances in modelling treatment efficiency by rapid sand filtration[J]. Water Research, 2017, 109:35-45
[39] Johnson K L, McCann C M, Wilkinson J L, et al. Dissolved Mn(Ⅲ) in water treatment works:Prevalence and significance[J]. Water Research, 2018, 140:181-190
|