[1] WEBER A Z,MENCH M M,MEYERS J P,et al.Redox flow batteries:A review[J].Journal of Applied Electrochemistry,2011,41(10):1137-1164 [2] 钱程,王为.添加剂对钒液流电池正极液的影响[J].化学工业与工程,2016,33(2):65-69QIAN Cheng,WANG Wei.Effect of additives on anolyte for vanadium flow battery[J].Chemical Industry and Engineering,2016,33(2):65-69(in Chinese) [3] 李林波,郭盼,任军权,等.复合添加剂对钒电池正极电解液性能的影响[J].化学工业与工程,2020,37(5):46-52LI Linbo,GUO Pan,REN Junquan,et al.Effect of composite additives on positive catholyte electrolyte performance of vanadium redox flow battery[J].Chemical Industry and Engineering,2020,37(5):46-52(in Chinese) [4] KEAR G,SHAH A A,WALSH F C.Development of the all-vanadium redox flow battery for energy storage:A review of technological,financial and policy aspects[J].International Journal of Energy Research,2012,36(11):1105-1120 [5] WINSBERG J,HAGEMANN T,JANOSCHKA T,et al.Redox-flow batteries:From metals to organic redox-active materials[J].Angewandte Chemie International Edition,2017,56(3):686-711 [6] GONG K,FANG Q,GU S,et al.Nonaqueous redox-flow batteries:Organic solvents,supporting electrolytes,and redox pairs[J].Energy&Environmental Science,2015,8(12):3515-3530 [7] DING Y,ZHAO Y,LI Y,et al.A high-performance all-metallocene-based,non-aqueous redox flow battery[J].Energy&Environmental Science,2017,10(2):491-497 [8] CHAI J,LASHGARI A,WANG X,et al.Extending the redox potentials of metal-free anolytes:Towards high energy density redox flow batteries[J].Journal of the Electrochemical Society,2020,doi:10.1149/1945-7111/ab9e84 [9] SEVOV C S,SAMAROO S K,SANFORD M S.Cyclopropenium salts as cyclable,high-potential catholytes in nonaqueous media[J].Advanced Energy Materials,2017,doi:10.1002/aenm.201602027 [10] 谢聪鑫,郑琼,李先锋,等.液流电池技术的最新进展[J].储能科学与技术,2017,6(5):1050-1057XIE Congxin,ZHENG Qiong,LI Xianfeng,et al.Current advances in the flow battery technology[J].Energy Storage Science and Technology,2017,6(5):1050-1057(in Chinese) [11] HUSKINSON B,MARSHAK M P,SUH C,et al.A metal-free organic-inorganic aqueous flow battery[J].Nature,2014,505(7482):195-198 [12] ER S,SUH C,MARSHAK M P,et al.Computational design of molecules for an all-quinone redox flow battery[J].Chemical Science,2015,6(2):885-893 [13] DEBRULER C,HU B,MOSS J,et al.Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries[J].Chem,2017,3(6):961-978 [14] YANG B,HOOBER-BURKHARDT L,KRISHNAMOORTHY S,et al.High-performance aqueous organic flow battery with quinone-based redox couples at both electrodes[J].Journal of the Electrochemical Society,2016,163(7):A1442-A1449 [15] LAI Y,LI X,LIU K,et al.Stable low-cost organic dye anolyte for aqueous organic redox flow battery[J].ACS Applied Energy Materials,2020,3(3):2290-2295 [16] HOOBER-BURKHARDT L,KRISHNAMOORTHY S,YANG B,et al.A new Michael-reaction-resistant benzoquinone for aqueous organic redox flow batteries[J].Journal of the Electrochemical Society,2017,164(4):A600-A607 [17] MURALI A,NIRMALCHANDAR A,KRISHNAMOORTHY S,et al.Understanding and mitigating capacity fade in aqueous organic redox flow batteries[J].Journal of the Electrochemical Society,2018,165(7):A1193-A1203 [18] HOLLAS A,WEI X,MURUGESAN V,et al.A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries[J].Nature Energy,2018,3(6):508-514 [19] LIU T,WEI X,NIE Z,et al.A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J].Advanced Energy Materials,2016,doi:10.1002/aenm.201501449 [20] ZHANG C,NIU Z,PENG S,et al.Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries[J].Advanced Materials,2019,doi:10.1002/adma.201970175 [21] HU B,TANG Y,LUO J,et al.Improved radical stability of viologen anolytes in aqueous organic redox flow batteries[J].Chemical Communications (Cambridge,England),2018,54(50):6871-6874 [22] WEDEGE K,DRAŽEVI<mathml id="98" ><math xmlns="http://www.w3.org/1998/Math/MathML" ><mrow><mrow><mover><mstyle mathsize="140%" displaystyle="true" ><mtext>C</mtext></mstyle><mo>'</mo></mover></mrow><mspace width="0.25em"/><mtext>E</mtext><mo>,</mo><mspace width="0.25em"/><mtext>Κ</mtext><mtext>Ο</mtext><mtext>Ν</mtext><mtext>Y</mtext><mtext>A</mtext><mspace width="0.25em"/><mtext>D</mtext><mo>,</mo><mspace width="0.25em"/><mi>e</mi><mi>t</mi><mspace width="0.25em"/><mi>a</mi><mi>l</mi></mrow></math></mathml>.Organic redox species in aqueous flow batteries:Redox potentials,chemical stability and solubility[J].Scientific Reports,2016,doi:10.1038/srep39101 [23] FORNARI R P,MESTA M,HJELM J,et al.Molecular engineering strategies for symmetric aqueous organic redox flow batteries[J].ACS Materials Letters,2020,2(3):239-246 [24] LEE W,PARK G,KWON Y.Alkaline aqueous organic redox flow batteries of high energy and power densities using mixed naphthoquinone derivatives[J].Chemical Engineering Journal,2020,doi:10.1016/j.cej.2019.123985 [25] WANG C,LI X,YU B,et al.Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries[J].ACS Energy Letters,2020,5(2):411-417 [26] LIU Y,GOULET M A,TONG L,et al.A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical[J].Chem,2019,5(7):1861-1870 [27] CAO J,TAO M,CHEN H,et al.A highly reversible anthraquinone-based anolyte for alkaline aqueous redox flow batteries[J].Journal of Power Sources,2018,386:40-46 [28] LIU S,ZHOU M,MA T,et al.A symmetric aqueous redox flow battery based on viologen derivative[J].Chinese Chemical Letters,2020,31(6):1690-1693 [29] ZHAO E,LIU T,JÓNSSON E,et al.In situ NMR metrology reveals reaction mechanisms in redox flow batteries[J].Nature,2020,579(7798):224-228 [30] ZHAO E,JÓNSSON E,JETHWA R B,et al.Coupled in situ NMR and EPR studies reveal the electron transfer rate and electrolyte decomposition in redox flow batteries[J].Journal of the American Chemical Society,2021,143(4):1885-1895 [31] KWABI D G,JI Y,AZIZ M J.Electrolyte lifetime in aqueous organic redox flow batteries:A critical review[J].Chemical Reviews,2020,120(14):6467-6489 [32] HU B,DEBRULER C,RHODES Z,et al.Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J].Journal of the American Chemical Society,2017,139(3):1207-1214 [33] WANG H,LI D,XU J,et al.An unsymmetrical two-electron viologens anolyte for salt cavern redox flow battery[J].Journal of Power Sources,2021,doi:10.1016/j.jpowsour.2021.229659 [34] HU B,LUO J,HU M,et al.A pH-neutral,metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte[J].Angewandte Chemie International Edition,2019,58(46):16629-16636 [35] MAO J,RUAN W,CHEN Q.Understanding the aqueous solubility of anthraquinone sulfonate salts:The quest for high capacity electrolytes of redox flow batteries[J].Journal of the Electrochemical Society,2020,doi:10.1149/1945-7111/ab 7550 [36] JIN S,JING Y,KWABI D G,et al.A water-miscible quinone flow battery with high volumetric capacity and energy density[J].ACS Energy Letters,2019,4(6):1342-1348 [37] KWABI D G,LIN K,JI Y,et al.Alkaline quinone flow battery with long lifetime at pH 12[J].Joule,2018,2(9):1894-1906 [38] JI Y,GOULET M A,POLLACK D A,et al.A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate[J].Advanced Energy Materials,2019,doi:10.1002/aenm.201900039 [39] KIM S,KIM D,HWANG G,et al.A bromide-ligand ferrocene derivative redox species with high reversibility and electrochemical stability for aqueous redox flow batteries[J].Journal of Electroanalytical Chemistry,2020,doi:10.1016/j.jelechem.2020.114131 [40] ZU X,ZHANG L,QIAN Y,et al.Molecular engineering of azobenzene-based anolytes towards high-capacity aqueous redox flow batteries[J].Angewandte Chemie International Edition,2020,59(49):22163-22170 [41] WANG C,YU B,LIU Y,et al.N-alkyl-carboxylate-functionalized anthraquinone for long-cycling aqueous redox flow batteries[J].Energy Storage Materials,2021,36:417-426 [42] LEUNG P,MARTIN T,XU Q,et al.A new aqueous all-organic flow battery with high cell voltage in acidic electrolytes[J].Applied Energy,2021,doi:10.1016/j.apenergy.2020.116058 [43] CHANG Z,HENKENSMEIER D,CHEN R.Shifting redox potential of nitroxyl radical by introducing an imidazolium substituent and its use in aqueous flow batteries[J].Journal of Power Sources,2019,418:11-16 [44] HU S,LI T,HUANG M,et al.Phenylene-bridged bispyridinium with high capacity and stability for aqueous flow batteries[J].Advanced Materials,2021,doi:10.1002/adma.202005839 [45] PELZER K M,CHENG L,CURTISS L A.Effects of functional groups in redox-active organic molecules:A high-throughput screening approach[J].The Journal of Physical Chemistry C,2017,121(1):237-245 [46] YU J,ZHAO T,PAN D.Tuning the performance of aqueous organic redox flow batteries via first-principles calculations[J].The Journal of Physical Chemistry Letters,2020,11(24):10433-10438 [47] DE LA CRUZ C,MOLINA A,PATIL N,et al.New insights into phenazine-based organic redox flow batteries by using high-throughput DFT modelling[J].Sustainable Energy&Fuels,2020,4(11):5513-5521 [48] KHATAEE A,WEDEGE K,DRAŽEVI<mathml id="151" ><math xmlns="http://www.w3.org/1998/Math/MathML" ><mrow><mrow><mover><mstyle mathsize="140%" displaystyle="true" ><mtext>C</mtext></mstyle><mo>'</mo></mover></mrow><mspace width="0.25em"/><mtext>E</mtext><mo>,</mo><mspace width="0.25em"/><mi>e</mi><mi>t</mi><mspace width="0.25em"/><mi>a</mi><mi>l</mi></mrow></math></mathml>.Differential pH as a method for increasing cell potential in organic aqueous flow batteries[J].J Mater Chem A,2017,5(41):21875-21882 [49] HUANG Z,KAY C W M,KUTTICH B,et al.An "interaction-mediating" strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries[J].Nano Energy,2020,doi:10.1016/j.nanoen.2020.104464 [50] HUANG Z,LEE J,HENKENSMEIER D,et al.Effect of molecular structure and coordinating ions on the solubility and electrochemical behavior of quinone derivatives for aqueous redox flow batteries[J].Journal of the Electrochemical Society,2020,doi:10.1149/1945-7111/abc90c [51] JANOSCHKA T,MORGENSTERN S,HILLER H,et al.Synthesis and characterization of TEMPO-and viologen-polymers for water-based redox-flow batteries[J].Polymer Chemistry,2015,6(45):7801-7811 [52] HAGEMANN T,STRUMPF M,SCHRÖTER E,et al.(2,2,6,6-tetramethylpiperidin-1-yl) oxyl-containing zwitterionic polymer as catholyte species for high-capacity aqueous polymer redox flow batteries[J].Chemistry of Materials,2019,31(19):7987-7999 [53] OHIRA A,FUNAKI T,ISHIDA E,et al.Redox-flow battery operating in neutral and acidic environments with multielectron-transfer-type viologen molecular assembly[J].ACS Applied Energy Materials,2020,3(5):4377-4383 [54] WANG B,ZHANG Y,ZHU Y,et al.Redox-active poly (6-(1H-pyrrol-1-yl) quinoxaline) as a novel organic anode material for aqueous hybrid flow batteries[J].Journal of Power Sources,2020,doi:10.1016/j.jpowsour.2020.227788 [55] KOZHUNOVA E Y,GVOZDIK N A,MOTYAKIN M V,et al.Redox-active aqueous microgels for energy storage applications[J].The Journal of Physical Chemistry Letters,2020,11(24):10561-10565 [56] 蔡兴华,黄成德.氧化还原靶向原理在液流电池中的应用进展[J].化学工业与工程,2020,37(4):73-79CAI Xinghua,HUANG Chengde.Progress in the application of redox-targeting-based flow batteries[J].Chemical Industry and Engineering,2020,37(4):73-79(in Chinese) [57] GENTIL S,REYNARD D,GIRAULT H H.Aqueous organic and redox-mediated redox flow batteries:A review[J].Current Opinion in Electrochemistry,2020,21:7-13 [58] ZANZOLA E,DENNISON C R,BATTISTEL A,et al.Redox solid energy boosters for flow batteries:Polyaniline as a case study[J].Electrochimica Acta,2017,235:664-671 [59] CHEN Y,ZHOU M,XIA Y,et al.A stable and high-capacity redox targeting-based electrolyte for aqueous flow batteries[J].Joule,2019,3(9):2255-2267 [60] ZHOU M,CHEN Y,SALLA M,et al.Single-molecule redox-targeting reactions for a pH-neutral aqueous organic redox flow battery[J].Angewandte Chemie International Edition,2020,59(34):14286-14291 [61] SEDENHO G C,DE PORCELLINIS D,JING Y,et al.Effect of molecular structure of quinones and carbon electrode surfaces on the interfacial electron transfer process[J].ACS Applied Energy Materials,2020,3(2):1933-1943 [62] SUN P,LIU Y,LI Y,et al.110th anniversary:Unleashing the full potential of quinones for high performance aqueous organic flow battery[J].Industrial&Engineering Chemistry Research,2019,58(10):3994-3999
|