[1] Esteban M, Leary D. Current developments and future prospects of offshore wind and ocean energy[J]. Applied Energy, 2012, 90(1):128-136
[2] Kaldellis J K, Zafirakis D. The wind energy revolution:A short review of a long history[J]. Renewable Energy, 2011, 36(7):1887-1901
[3] Mekhilef S, Saidur R, Safari A. A review on solar energy use in industries[J]. Renewable & Sustainable Energy Reviews, 2011, 15(4):1777-9170
[4] Alvarezsilva O, Winter C, Osorio A F. Salinity gradient energy at river mouths[J]. Environscitechnollett, 2014, 1(10):410-415
[5] Kuleszo J, Kroeze C, Post J, et al. The potential of blue energy for reducing emissions of CO2 and non-CO2 greenhouse gases[J]. Journal of Integrative Environmental Sciences, 2010, 7(sup1):89-96
[6] Tamburini A, Barbera G L, Cipollina A, et al. CFD prediction of scalar transport in thin channels for reverse electrodialysis[J]. Desalination & Water Treatment, 2015, 55(12):3424-3445
[7] Jia Z, Wang B, Song S, et al. Blue energy:Current technologies for sustainable power generation from water salinity gradient[J]. Renewable & Sustainable Energy Reviews, 2014, 31(1):91-100
[8] Zhang H, Jiang D, Zhang B, et al. A novel hybrid poly (vinyl alcohol) (PVA)/poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) membranes for reverse electrodialysis power system[J]. Electrochimica Acta, 2017, 239:65-73
[9] Vermaas D A, Saakes M, Nijmeijer K. Power generation using profiled membranes in reverse electrodialysis[J]. Journal of Membrane Science, 2011, 385:234-242
[10] Güler E, Elizen R, Saakes M, et al. Micro-Structured membranes for electricity generation by reverse electrodialysis[J]. Journal of Membrane Science, 2014, 458(6):136-148
[11] Pawlowski S, Rijnaarts T, Saakes M, et al. Improved fluid mixing and power density in reverse electrodialysis stacks with chevron-profiled membranes[J]. Journal of Membrane Science, 2017, 531:111-121
[12] Ahmed M, Shayya W H, Hoey D, et al. Use of evaporation ponds for brine disposal in desalination plants[J]. Desalination, 2015, 130(2):155-168
[13] 张云, 秦英杰, 刘青, 等. 聚四氟乙烯中空纤维气态膜法浓海水提取溴素[J]. 化学工业与工程, 2016, (6):56-62 Zhang Yun, Qin Yingjie, Liu Qing, et al. PTFE hollow fiber supported gas membrane process for extraction of bromine from brine[J]. Chemical Industry and Engineering, 2016, (6):56-62(in Chinese)
[14] Pramanik B K, Li S, Jegatheesan V. A review on the management and treatment of brine solutions[J]. Environmental Science Water Research & Technology, 2017, 3(4):625-658
[15] 董泽亮, 张雨山, 黄西平,等. 浓海水或卤水制备氢氧化镁粉体的研究进展[J]. 化学工业与工程, 2011, 28(4):69-73 Dong Zheliang, Zhang Yushan, Huang Xiping, et al. Progress in preparation of magnesium hydroxide powder from concentrated seawater and brine[J]. Chemical Industry and Engineering, 2011, 28(4):69-73(in Chinese)
[16] 宋跃飞, 高学理, 苏保卫, 等. 高回收率反渗透海水淡化工艺的应用研究进展[J]. 水处理技术, 2013, 39(3):6-12 Song Yuefei, Gao Xueli, Su Baowei, et al. Progress on investigation and application of high recovery seawater reverse osmosis desalination technology[J]. Technology of Water Treatment, 2013, 39(3):6-12(in Chinese)
[17] Taniguchi M, Kurihara M, Kimura S. Behavior of a reverse osmosis plant adopting a brine conversion two-stage process and its computer simulation[J]. Journal of Membrane Science, 2001, 183(2):249-257
[18] Kurihara M, Yamamura H, Nakanishi T, et al. Operation and reliability of very high-recovery seawater desalination technologies by brine conversion two-stage RO desalination system[J]. Desalination, 2001, 138(1):191-199
[19] 陈益棠, 陈波. 高回收率反渗透海水淡化[J]. 水处理技术, 2004, 30(4):196-198 Chen Yitang, Chen Bo. High recovery seawater desalination using RO-NF integrated process[J]. Technology of Water Treatment, 2004, 30(4):196-198(in Chinese)
[20] 陈益棠, 胡昕. 反渗透-纳滤海水淡化最佳化[J]. 水处理技术, 2006, 32(9):84-92 Chen Yitang, Hu Xin. Optimization of seawater desalination by RO and NF processes[J]. Technology of Water Treatment, 2006, 32(9):84-92(in Chinese)
[21] Kwon K, Han J, Park B H, et al. Brine recovery using reverse electrodialysis in membrane-based desalination processes[J]. Desalination, 2015, 362:1-10
[22] Hong J, Zhang W, Luo J, et al. Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system:The effect of monovalent and multivalent ions[J]. Applied Energy, 2013, 110:244-251
[23] Veerman J, Saakes M, Metz S J, et al. Reverse electrodialysis:Performance of a stack with 50 cells on the mixing of sea and river water[J]. Journal of Membrane Science, 2009, 327(1):136-144
[24] Veerman J, Saakes M, Metz S J, et al. Reverse electrodialysis:A validated process model for design and optimization[J]. Chemical Engineering Journal, 2011, 166(1):256-268
[25] Veerman J, Post J W, Saakes M, et al. Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model[J]. Journal of Membrane Science, 2008, 310(1/2):418-430
[26] Ling L, Leow H F, Sarmidi M R. Citric acid concentration by electrodialysis:Ion and water transport modelling[J]. Journal of Membrane Science, 2002, 199(1):59-67
[27] 王亚琴, 徐铜文, 王焕庭. 正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1):252-260 Wang Yaqin, Xu Tongwen, Wang Huanting. Forward osmosis membrane process and its mass transport mechanisms[J]. Journal of Chemical Industry and Engineering, 2013, 64(1):252-260(in Chinese)
[28] 邓会宁, 田明, 杨秀丽, 等. 反电渗析法海洋盐差电池的结构优化与能量分析[J]. 化工学报, 2015, 66(5):1919-1924 Deng Huining, Tian Ming, Yang Xiuli, et al. Structure optimization and energy analysis of reverse electrodialysis to recover energy of oceanic salinity gradient[J]. Journal of Chemical Industry and Engineering, 2015, 66(5):1919-1924(in Chinese)
[29] Li W, Krantz W B, Cornelissen E R, et al. A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management[J]. Applied Energy, 2013, 104(2):592-602
|