[1] 蔡迪, 朱远蹠, 翟婷婷, 等. Pd/WS2二维复合材料的制备及电解水制氢性能研究[J]. 化学工业与工程, 2019, 36(2): 48-52 CAI Di, ZHU Yuanzhi, ZHAI Tingting, et al. Enhanced water electrolysis by Pd/WS2 nanosheets composite[J]. Chemical Industry and Engineering, 2019, 36(2): 48-52(in Chinese)
[2] 王宏智, 高琪, 苏展, 等. 泡沫镍基三维空心球CoFe2O4@NF复合材料的制备与析氧性能研究[J]. 化学工业与工程, 2021, 38(2): 61-68 WANG Hongzhi, GAO Qi, SU Zhan, et al. Research on preparation and electrocatalytic performance for oxygen evolution reaction of 3D hollow spherical CoFe2O4@NF composite based on Ni foam[J]. Chemical Industry and Engineering, 2021, 38(2): 61-68(in Chinese)
[3] HUANG Y, GONG Q, SONG X, et al. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution[J]. ACS Nano, 2016, 10(12): 11337-11343
[4] 主曼琳, 蔡旺锋, 王燕. MOF衍生的NiCoP/C@NiMn-LDH复合材料的制备与电化学性能研究[J]. 化学工业与工程, 2022, 39(3): 80-88 ZHU Manlin, CAI Wangfeng, WANG Yan. Preparation of MOF-derived NiCoP/C@NiMn-LDH composite and its electrochemical properties[J]. Chemical Industry and Engineering, 2022, 39(3): 80-88(in Chinese)
[5] LV Y, GONG J. In situ growth of MOF-derived ultrafine molybdenum carbide nanoparticles supported on Ni foam as efficient hydrogen-evolution electrocatalysts[J]. Journal of Materials Chemistry A, 2021, 9(27): 15246-15253
[6] WU Z, SONG M, ZHANG Z, et al. Porous two-dimensional layered molybdenum compounds coupled with N-doped carbon based electrocatalysts for hydrogen evolution reaction[J]. Applied Surface Science, 2019, 465: 724-729
[7] 葛升, 闵洛夫, 费洪达, 等. 一步电沉积制备高活性高稳定镍铁合金析氧电催化剂[J]. 化学工业与工程, 2022, 39(2): 41-49 GE Sheng, MIN Luofu, FEI Hongda, et al. Highly efficient and durable Ni-Fe alloy catalyst towards OER via one-step electrodeposition[J]. Chemical Industry and Engineering, 2022, 39(2): 41-49(in Chinese)
[8] KUZNETSOV D A, CHEN Z, ABDALA P M, et al. Single-atom-substituted Mo2CTx: Fe-layered carbide for selective oxygen reduction to hydrogen peroxide: Tracking the evolution of the MXene phase[J]. Journal of the American Chemical Society, 2021, 143(15): 5771-5778
[9] JIA H, LI W, JU Z, et al. Synthesis, structure and magnetism of metal-organic framework materials with doubly pillared layers[J]. European Journal of Inorganic Chemistry, 2006, 2006(21): 4264-4270
[10] LI D, LI J, YI L, et al. Ultrathin metal-organic framework hybrid nanosheets enabled active oxygen evolution electrocatalysis in alkaline media[J]. Journal of Electroanalytical Chemistry, 2022, 922: 116765
[11] LI F, WANG P, HUANG X, et al. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation[J]. Angewandte Chemie (International Ed in English), 2019, 58(21): 7051-7056
[12] PENG F, ZHANG L, JIANG B, et al. In-situ synthesis of microflower composed of N-doped carbon films and Mo2C coupled with Ni or FeNi alloy for water splitting[J]. Chemical Engineering Journal, 2022, 427: 131712
[13] BAO J, WANG Z, XIE J, et al. A ternary cobalt-molybdenum-vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting[J]. Chemical Communications, 2019, 55(24): 3521-3524
[14] YU J, WANG A, YU W, et al. Tailoring the ruthenium reactive sites on N doped molybdenum carbide nanosheets via the anti-Ostwald ripening as efficient electrocatalyst for hydrogen evolution reaction in alkaline media[J]. Applied Catalysis B: Environmental, 2020, 277: 119236
[15] CHEN Y, HUANG Y, XU M, et al. Catalysts by pyrolysis: Direct observation of transformations during re-pyrolysis of transition metal-nitrogen-carbon materials leading to state-of-the-art platinum group metal-free electrocatalyst[J]. Materials Today, 2022, 53: 58-70
[16] LIU Z, LI Y, FANG J, et al. Investigation of nanoscale tungsten carbide enhanced surface carbon as a platinum support for the hydrogen evolution reaction[J]. Nanomaterials, 2023, 13(8): 1369
[17] LUO X, YUAN P, LUO J, et al. The enhancing effect of stable oxygen functional groups on porous-carbon-supported Pt catalysts for alkaline hydrogen evolution[J]. Nanomaterials, 2023, 13(8): 1415
[18] YANG Y, YU Y, LI J, et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction[J]. Nano-Micro Letters, 2021, 13(1): 160
[19] CHI J, GAO W, LIN J, et al. Porous core-shell N-doped Mo2C@C nanospheres derived from inorganic-organic hybrid precursors for highly efficient hydrogen evolution[J]. Journal of Catalysis, 2018, 360: 9-19
[20] GAO X, ZHANG H, LI Q, et al. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angewandte Chemie (International Ed in English), 2016, 55(21): 6290-6294
[21] WANG W, ZHANG L, GAO C, et al. Covalent organic framework derived Mo2C-MoNi4 chainmail catalysts for hydrogen evolution[J]. Applied Surface Science, 2023, 627: 157322
[22] SUN Y, PENG F, ZHANG L, et al. Hierarchical nitrogen-doped Mo2C nanoparticle-in-microflower electrocatalyst: in situ synthesis and efficient hydrogen-evolving performance in alkaline and acidic media[J]. ChemCatChem, 2020, 12(23): 6040-6049
[23] JIA H, GUO C, CHEN R, et al. Ruthenium nanoparticles supported on S-doped graphene as an efficient HER electrocatalyst[J]. New Journal of Chemistry, 2021, 45(47): 22378-22385
[24] JIA H, LI H, ZHAO J, et al. Hyperdispersed ruthenium nanoparticles anchored on S/N Co-doped carbon nanotubes as an efficient HER electrocatalyst[J]. New Journal of Chemistry, 2022, 46(33): 15804-15810
[25] YOU M, DU X, HOU X, et al. In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER[J]. Applied Catalysis B: Environmental, 2022, 317: 121729
[26] LIU X, JIANG G, TAN Y, et al. Highly-dispersed ruthenium precursors via a self-assembly-assisted synthesis of uniform ruthenium nanoparticles for superior hydrogen evolution reaction[J]. RSC Advances, 2020, 10(24): 14313-14316
|