[1] HONG E, YANG Z, ZENG H, et al. Recent development and challenges of bipolar membranes for high performance water electrolysis[J]. ACS Materials Letters, 2024, 6(5): 1623-1648
[2] PÄRNAMÄE R, MAREEV S, NIKONENKO V, et al. Bipolar membranes: A review on principles, latest developments, and applications[J]. Journal of Membrane Science, 2021, 617: 118538
[3] TUFA R A, BLOMMAERT M A, CHANDA D, et al. Bipolar membrane and interface materials for electrochemical energy systems[J]. ACS Applied Energy Materials, 2021, 4(8): 7419-7439
[4] MAREEV S A, EVDOCHENKO E, WESSLING M, et al. A comprehensive mathematical model of water splitting in bipolar membranes: Impact of the spatial distribution of fixed charges and catalyst at bipolar junction[J]. Journal of Membrane Science, 2020, 603: 118010
[5] SIMONS R. Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes[J]. Electrochimica Acta, 1984, 29(2): 151-158
[6] WIEN M. On the validity of Ohm’s laws for electrolytes in very high field forces[J]. Annalen Der Physik, 1924, 73(3-4): 161-181
[7] GROSSMAN G. Water dissociation effects in ion transport through composite membrane[J]. The Journal of Physical Chemistry, 1976, 80(14): 1616-1625
[8] SIMONS R. Strong electric field effects on proton transfer between membrane-bound amines and water[J]. Nature, 1979, 280: 824-826
[9] ONSAGER L. Deviations from Ohm’s law in weak electrolytes[J]. The Journal of Chemical Physics, 1934, 2(9): 599-615
[10] TANIOKA A, SHIMIZU K, MIYASAKA K, et al. Effect of polymer materials on membrane potential, rectification and water splitting in bipolar membranes[J]. Polymer, 1996, 37(10): 1883-1889
[11] KAISER V, BRAMWELL S T, HOLDSWORTH P C W, et al. Onsager’s Wien effect on a lattice[J]. Nature Materials, 2013, 12: 1033-1037
[12] GIESBRECHT P K, FREUND M S. Recent advances in bipolar membrane design and applications[J]. Chemistry of Materials, 2020, 32(19): 8060-8090
[13] Kirganova E V, Timashev S F, Popkov Y M. Electrolytic dissociation of water-molecules in bipolar ion-exchange membranes[J]. Soviet Electrochemistry, 1983, 19(7): 876-878
[14] CHEN L, XU Q, OENER S Z, et al. Design principles for water dissociation catalysts in high-performance bipolar membranes[J]. Nature Communications, 2022, 13: 3846
[15] KEMPERMAN A J B. Handbook bipolar membrane technology[M]. Netherlands: Twente University Press (TUP), 2000
[16] BLOMMAERT M A, AILI D, TUFA R A, et al. Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems[J]. ACS Energy Letters, 2021, 6(7): 2539-2548
[17] PARK E J, JANNASCH P, MIYATAKE K, et al. Aryl ether-free polymer electrolytes for electrochemical and energy devices[J]. Chemical Society Reviews, 2024, 53(11): 5704-5780
[18] ZENG M, HE X, WEN J, et al. N-methylquinuclidinium-based anion exchange membrane with ultrahigh alkaline stability[J]. Advanced Materials, 2023, 35(51): 2306675
[19] 金延超, 陈日耀, 陈晓, 等. 一种主链碳氟-酞菁催化层耐碱双极膜及其制备方法: CN114471179B[P]. 2023-09-22
[20] 白晓倩.半含浸法制备阴离子扩散渗析膜及应用研究 [D]. 杭州:浙江大学,2016 BAI Xiaoqian. Preparation and application of anion diffusion dialysis membrane by semi-impregnation method [D]. Hangzhou: Zhejiang University, 2016 (in Chinese)
[21] 林埔, 陈燕红, 黄雪红. SSBS-g-AA/SBS-g-DMAEMA双极膜在电氧化制备乳糖酸中的用途: CN112030190A[P]. 2020-12-04
[22] BHOWMICK S, QURESHI M. Vanadium oxide nanosheet-infused functionalized polysulfone bipolar membrane for an efficient water dissociation reaction[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5466-5477
[23] 徐铜文, 吴亮, 罗芬, 等. 一种反应-分离双功能双极膜及其制备方法: CN115888417A[P]. 2023-04-04
[24] 郭宇星. 侧链磺化聚醚醚酮质子交换膜的制备及其在双极膜中的性能研究[D]. 武汉: 武汉理工大学, 2020 GUO Yuxing. Preparation of side-chain sulfonated polyether ether ketone proton exchange membrane and its performance in bipolar membrane[D].Wuhan: Wuhan University of Technology, 2020 (in Chinese)
[25] 刘训道, 贾文静, 李加杰. 全氟双极膜及其制备方法: CN116036889A[P]. 2023-05-02
[26] SHI S, PAN Y, LU B, et al. Preparation and characterization of a bipolar membrane modified by copper phthalocyanine 16-carboxylic acid and acetyl ferrocene[J]. Journal of Macromolecular Science, Part B, 2014, 53(8): 1431-1441
[27] PU Y, ZHU S, WANG P, et al. Novel branched sulfonated polyimide/molybdenum disulfide nanosheets composite membrane for vanadium redox flow battery application[J]. Applied Surface Science, 2018, 448: 186-202
[28] KISHINO M, YUZUKI K, FUKUTA K. Bipolar membrane: US20190118144[P]. 2019-04-25
[29] LEE L, KIM D. Poly(arylene ether ketone)-based bipolar membranes for acid-alkaline water electrolysis applications[J]. Journal of Materials Chemistry A, 2021, 9(9): 5485-5496
[30] AL-DHUBHANI E, SWART H, BORNEMAN Z, et al. Entanglement-enhanced water dissociation in bipolar membranes with 3D electrospun junction and polymeric catalyst[J]. ACS Applied Energy Materials, 2021, 4(4): 3724-3736
[31] RODELLAR C G, GISBERT-GONZALEZ J M, SARABIA F, et al. Ion solvation kinetics in bipolar membranes and at electrolyte-metal interfaces[J]. Nature Energy, 2024, 9: 548-558
[32] 罗芬, 杨晓琪, 段方麟, 等. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163 LUO Fen, YANG Xiaoqi, DUAN Fanglin, et al. Recent advances in the bipolar membrane and its applications[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 145-163(in Chinese)
[33] FLIEG R, STORR M, KRAUSE B, et al. Doped membranes: US20140326669[P]. 2014-11-06
[34] ABDU S, SRICHAROEN K, WONG J E, et al. Catalytic polyelectrolyte multilayers at the bipolar membrane interface[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10445-10455
[35] ESWARASWAMY B, MANDAL P, GOEL P, et al. Potential of dipicolinic acid as a water-dissociating catalyst in a bipolar membrane[J]. ACS Applied Polymer Materials, 2021, 3(12): 6218-6229
[36] CHEN Y, WRUBEL J A, KLEIN W E, et al. High-performance bipolar membrane development for improved water dissociation[J]. ACS Applied Polymer Materials, 2020, 2(11): 4559-4569
[37] HUANG Y, FAN H, YIP N Y. Influence of electrolyte on concentration-induced conductivity-permselectivity tradeoff of ion-exchange membranes[J]. Journal of Membrane Science, 2023, 668: 121184
[38] CHENG G, ZHAO Y, LI W, et al. Performance enhancement of bipolar membranes modified by Fe complex catalyst[J]. Journal of Membrane Science, 2019, 589: 117243
[39] CELIK A, HASAR H. Fabrication and implementation of extensively dense bipolar membrane using FeCl3 as a junction catalyst[J]. Polymer Bulletin, 2022, 79(8): 6815-6825
[40] RYBALKINA O A, TSYGURINA K A, MELNIKOVA E D, et al. Catalytic effect of ammonia-containing species on water splitting during electrodialysis with ion-exchange membranes[J]. Electrochimica Acta, 2019, 299: 946-962
[41] SHEHZAD M A, YASMIN A, GE X, et al. Shielded goethite catalyst that enables fast water dissociation in bipolar membranes[J]. Nature Communications, 2021, 12: 9
[42] MEL’NIKOV S S, SHAPOVALOVA O V, SHEL’DESHOV N V, et al. Effect of d-metal hydroxides on water dissociation in bipolar membranes[J]. Petroleum Chemistry, 2011, 51(7): 577-584
[43] RATHOD N H, MISHRA S, MISHRA S, et al. Fabrication of efficient bipolar membranes with functionalized MOF interfacial layer for generation of various carboxylic acids via electrodialysis[J]. Chemical Engineering Journal, 2023, 477: 146765
[44] MCDONALD M B, FREUND M S, HAMMOND P T. Catalytic, conductive bipolar membrane interfaces through layer-by-layer deposition for the design of membrane-integrated artificial photosynthesis systems[J]. ChemSusChem, 2017, 10(22): 4599-4609
[45] WANG H, DING F, JIN G, et al. Ultra-thin graphene oxide intermediate layer for bipolar membranes using atomizing spray assembly[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 114-120
[46] MCDONALD M B, FREUND M S. Graphene oxide as a water dissociation catalyst in the bipolar membrane interfacial layer[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13790-13797
[47] MANOHAR M, DAS A K, SHAHI V K. Efficient bipolar membrane with functionalized graphene oxide interfacial layer for water splitting and converting salt into acid/base by electrodialysis[J]. Industrial & Engineering Chemistry Research, 2018, 57(4): 1129-1136
[48] LIU Y, CHEN J, CHEN R, et al. Effects of multi-walled carbon nanotubes on bipolar membrane properties[J]. Materials Chemistry and Physics, 2018, 203: 259-265
[49] AHLFIELD J M, LIU L S, KOHL P A. PEM/AEM junction design for bipolar membrane fuel cells[J]. Journal of the Electrochemical Society, 2017, 164(12): F1165-F1171
[50] MANOHAR M, SHAHI V K. Graphene oxide-polyaniline as a water dissociation catalyst in the interfacial layer of bipolar membrane for energy-saving production of carboxylic acids from carboxylates by electrodialysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3463-3471
[51] MENG L, SHI W, LI Y, et al. Janus membranes at the water-energy nexus: A critical review[J]. Advances in Colloid and Interface Science, 2023, 318: 102937
[52] KOLE S, VENUGOPALAN G, BHATTACHARYA D, et al. Bipolar membrane polarization behavior with systematically varied interfacial areas in the junction region[J]. Journal of Materials Chemistry A, 2021, 9(4): 2223-2238
[53] CHABI S, WRIGHT A G, HOLDCROFT S, et al. Transparent bipolar membrane for water splitting applications[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26749-26755
[54] ZABOLOTSKII V, SHELDESHOV N, MELNIKOV S. Heterogeneous bipolar membranes and their application in electrodialysis[J]. Desalination, 2014, 342: 183-203
[55] KUHL K P, CAVE E R, LEONARD G, et al. Membrane electrode assembly for cox reduction: US20210395908[P]. 2021-12-23
[56] AGARWAL T, PRASAD A K, ADVANI S G, et al. Infrared spectroscopy for understanding the structure of Nafion and its associated properties[J]. Journal of Materials Chemistry A, 2024, 12(24): 14229-14244
[57] KATZENBERG A, CHOWDHURY A, FANG M, et al. Highly permeable perfluorinated sulfonic acid ionomers for improved electrochemical devices: Insights into structure-property relationships[J]. Journal of the American Chemical Society, 2020, 142(8): 3742-3752
[58] TANG M, YAN H, ZHANG X, et al. Materials strategies tackling interfacial issues in catalyst layers of proton exchange membrane fuel cells[J]. Advanced Materials, 2023: e2306387
[59] WU X, CHEN N, HU C, et al. Fluorinated poly(aryl piperidinium) membranes for anion exchange membrane fuel cells[J]. Advanced Materials, 2023, 35(26): e2210432
[60] FAVERO S, STEPHENS I E L, TITIRCI M M. Anion exchange ionomers: Design considerations and recent advances: An electrochemical perspective[J]. Advanced Materials, 2024, 36(8): 2308238
[61] PENG S, LU S, ZHANG J, et al. Evaluating the interfacial reaction kinetics of the bipolar membrane interface in the bipolar membrane fuel cell[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11217-11220
[62] ÜNLÜ M, ZHOU J, KOHL P A. Hybrid anion and proton exchange membrane fuel cells[J]. The Journal of Physical Chemistry C, 2009, 113(26): 11416-11423
[63] 彭思侃, 徐鑫, 张劲, 等. 双极界面聚合物膜燃料电池Ⅰ: 膜电极构型[J]. 化学学报, 2015, 73(2): 137-142 PENG Sikan, XU Xin, ZHANG Jin, et al. Bipolar interfacial polyelectrolyte membrane fuel cell Ⅰ: Structure of membrane electrode assembly[J]. Acta Chimica Sinica, 2015, 73(2): 137-142(in Chinese)
[64] AYATO Y, OKADA T, YAMAZAKI Y. Characterization of bipolar ion exchange membrane for polymer electrolyte fuel cells[J]. Electrochemistry, 2003, 71(5): 313-317
[65] LOBYNTSEVA E, KALLIO T, KONTTURI K. Bipolar membranes in forward bias region for fuel cell reactors[J]. Electrochimica Acta, 2006, 51(7): 1165-1171
[66] ÜNLÜ M, ZHOU J F, ANESTIS-RICHARD I, et al. Improved gas diffusion electrodes for hybrid polymer electrolyte fuel cells[J]. Electrochimica Acta, 2011, 56(12): 4439-4444
[67] ÜNLÜ D M, ZHOU D, ANESTIS-RICHARD I, et al. Characterization of anion exchange ionomers in hybrid polymer electrolyte fuel cells[J]. ChemSusChem, 2010, 3(12): 1398-1402
[68] ÜNLÜ M, ZHOU J, KOHL P. Hybrid polymer electrolyte fuel cells: Alkaline electrodes with proton conducting membrane[J]. Angewandte Chemie International Edition, 2010, 49(7): 1299-1301
[69] PENG S, XU X, LU S, et al. A self-humidifying acidic-alkaline bipolar membrane fuel cell[J]. Journal of Power Sources, 2015, 299: 273-279
[70] 徐鑫, 彭思侃, 张劲, 等. 双极界面聚合物膜燃料电池Ⅱ: 阴极催化层结构优化[J]. 化学学报, 2016, 74(3): 271-276 XU Xin, PENG Sikan, ZHANG Jin, et al. Bipolar interfacial polyelectrolyte membrane fuel cell Ⅱ: Optimization of cathode catalyst layer[J]. Acta Chimica Sinica, 2016, 74(3): 271-276(in Chinese)
[71] SUHAG A, GOEL P, ESWARASWAMY B, et al. Surface-modified nanoclay incorporated anion exchange membrane facilitating performance in self-humidifying bipolar membrane fuel cell[J]. International Journal of Hydrogen Energy, 2024, 55: 704-717
[72] CHATENET M, POLLET B G, DEKEL D R, et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments[J]. Chemical Society Reviews, 2022, 51(11): 4583-4762
[73] LI A, KONG S, ADACHI K, et al. Atomically dispersed hexavalent iridium oxide from MnO2 reduction for oxygen evolution catalysis[J]. Science, 2024, 384(6696): 666-670
[74] YASSIN K, RASIN I G, BRANDON S, et al. How can we design anion-exchange membranes to achieve longer fuel cell lifetime?[J]. Journal of Membrane Science, 2024, 690: 122164
[75] YIN L, REN R, HE L, et al. Stable anion exchange membrane bearing quinuclidinium for high-performance water electrolysis[J]. Angewandte Chemie International Edition, 2024, 136(19): e202400764
[76] KIM B S, PARK S C, KIM D H, et al. Bipolar membranes to promote formation of tight ice-like water for efficient and sustainable water splitting[J]. Small, 2020, 16(41): e2002641
[77] GRIMAUD A. Acidic or basic oxides? Better together[J]. Joule, 2020, 4(11): 2251-2253
[78] PARK E J, ARGES C G, XU H, et al. Membrane strategies for water electrolysis[J]. ACS Energy Letters, 2022, 7(10): 3447-3457
[79] MAYERHÖFER B, MCLAUGHLIN D, BÖHM T, et al. Bipolar membrane electrode assemblies for water electrolysis[J]. ACS Applied Energy Materials, 2020, 3(10): 9635-9644
[80] OENER S Z, FOSTER M J, BOETTCHER S W. Accelerating water dissociation in bipolar membranes and for electrocatalysis[J]. Science, 2020, 369(6507): 1099-1103
[81] MARIN D, PERRYMAN J T, STEVENS M B, et al. Hydrogen production with seawater-resilient bipolar-membrane electrolyzers[J]. ECS Meeting Abstracts, 2023, 2023(39): 1908
[82] YAN J, YU W, WANG Z, et al. Review on high-performance polymeric bipolar membrane design and novel electrochemical applications[J]. Aggregate, 2024: e527
[83] KABIR M M, SABUR G M, AKTER M M, et al. Electrodialysis desalination, resource and energy recovery from water industries for a circular economy[J]. Desalination, 2024, 569: 117041
[84] GE Z, SHEHZAD M A, YANG X, et al. High-performance bipolar membrane for electrochemical water electrolysis[J]. Journal of Membrane Science, 2022, 656: 120660
[85] NARAYEN D, VAN BERLO E, VAN LIER J B, et al. Recovery of sulfuric acid and ammonia from scrubber effluents using bipolar membrane electrodialysis: Effect of pH and temperature[J]. Separation and Purification Technology, 2024, 338: 126605
[86] SIRITANARATKUL B, FORSTER M, GREENWELL F, et al. Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts[J]. Journal of the American Chemical Society, 2022, 144(17): 7551-7556
[87] VERMAAS D A, SMITH W A. Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane[J]. ACS Energy Letters, 2016, 1(6): 1143-1148
[88] XI D, ALFARAIDI A M, GAO J, et al. Mild pH-decoupling aqueous flow battery with practical pH recovery[J]. Nature Energy, 2024, 9: 479-490
[89] BUI J C, LEES E W, MARIN D H, et al. Multi-scale physics of bipolar membranes in electrochemical processes[J]. Nature Chemical Engineering, 2024, 1: 45-60
[90] XIA J, EIGENBERGER G, STRATHMANN H, et al. Flow battery based on reverse electrodialysis with bipolar membranes: Single cell experiments[J]. Journal of Membrane Science, 2018, 565: 157-168
[91] SHARIFIAN R, WAGTERVELD R M, DIGDAYA I A, et al. Electrochemical carbon dioxide capture to close the carbon cycle[J]. Energy & Environmental Science, 2021, 14(2): 781-814
|