[1] 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255 ZHAO Yongzhi, MENG Bo, CHEN Linxin, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255(in Chinese)
[2] 倪萌,LEUNG M K H, SUMATHY K. 电解水制氢技术进展 [J]. 能源环境保护, 2004, (5): 5-9 NI Meng, LEUNG M K H, SUMATHY K. Progress of hydrogen production by electrolytic water [J]. Energy and Environmental Protection, 2004, (5): 5-9(in Chinese)
[3] 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951 GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951(in Chinese)
[4] ZHANG J, ZHANG S, LI S, et al. Electrocatalytic properties of nickel foam-based Ni-Mo, Ni+Mo and Ni+Mo/Ni-Mo electrodes for hydrogen evolution reaction[J]. Materials Science Forum, 2018, 921: 134-140
[5] LI C, WANG J, WANG Y, et al. Enhancing hydrogen evolution reaction by synergistically coupling NiMo alloy with Ni(OH)2 nanosheet on carbon cloth[J]. ChemistrySelect, 2020, 5(22): 6774-6779
[6] RAJ I A. Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells[J]. Journal of Materials Science, 1993, 28(16): 4375-4382
[7] SANTOS H L S, CORRADINI P G, MEDINA M, et al. NiMo-NiCu inexpensive composite with high activity for hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17492-17501
[8] MCKONE J R, WARREN E L, BIERMAN M J, et al. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes[J]. Energy & Environmental Science, 2011, 4(9): 3573-3583
[9] KRSTAJIC N, JOVIC V, GAJICKRSTAJIC L, et al. Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution[J]. International Journal of Hydrogen Energy, 2008, 33(14): 3676-3687
[10] LI N, HUANG J, CHEN W, et al. Electrochemical characteristics of the amorphous-nanocrystal Ni-Mo cathodes in sodium hydroxide solution[J]. Key Engineering Materials, 2015, 667: 280-285
[11] SUN S, PODLAHA E J. Electrodeposition of Mo-rich, MoNi alloys from an aqueous electrolyte[J]. Journal of the Electrochemical Society, 2011, 159(2): D97-D102
[12] WANG M, WANG Z, YU X, et al. Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2173-2181
[13] JOVIC V, JOVIC B, GERY S. Composition and morphology changes and their influence on hydrogen evolution on Ni-Mo and Fe-Mo alloys electrodeposited by DC and pulsed current[C]//American Electroplaters and Surface Finishers Society,2002
[14] BAO Q, ZHENG W, CHEN L, et al. Optimization of plating process and corrosion behavior of nanocrystalline Ni-Mo coatings on pure aluminum[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128128
[15] LIU C, HUANG X, XU R, et al. Microstructure and properties of nanocrystalline Ni-Mo coatings prepared by ultrasound-assisted pulse electrodeposition[J]. Journal of Materials Engineering and Performance, 2021, 30(4): 2514-2525
[16] Eagleton, Earwaker, Farr, et al. Pulse electrodeposited nickel molybdenum[J]. Transactions of the IMF, 2007, 85(1): 34-39
[17] 黄波. 离子液体中电沉积镍钼合金及其催化析氢性能[D]. 天津: 天津大学, 2014 HUANG Bo. The preparation of Ni-Mo alloy in ionic liquid and its catalytic properties for hydrogen evolution[D].Tianjin: Tianjin University, 2014 (in Chinese)
[18] NAVARRO-FLORES E, CHONG Z, OMANOVIC S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium[J]. Journal of Molecular Catalysis A: Chemical, 2005, 226(2): 179-197
[19] HACHÉ M J R, ZOU Y, ERB U. Post-deposition crack evolution in Cr(III) alloy electrodeposits: Phenomenology[J]. Surface and Coatings Technology, 2021, 406: 126648
[20] 张慧, 周芬, 潘牧. Pt合金催化剂电化学活性面积表征方法综述[J]. 科学通报, 2023, 68(5): 448-456 ZHANG Hui, ZHOU Fen, PAN Mu. Review on electrochemical active surface area characterization methods of Pt alloy catalysts[J]. Chinese Science Bulletin, 2023, 68(5): 448-456(in Chinese)
[21] 张颖, 段莉蕾. 加氢反应器不锈钢单层堆焊氢剥离试验研究[J]. 一重技术, 2015(2): 41-46 ZHANG Ying, DUAN Lilei. Hydrogen-induced disbonding test on single stainless steel clad layer of hydrogenation reactors[J]. CFHI Technology, 2015(2): 41-46(in Chinese)
[22] CHASSAING E, VU QUANG K, BAUMGÄRTNER M E, et al. Properties of electrodeposited Ni-Mo alloy coatings[J]. Surface and Coatings Technology, 1992, 53(3): 257-265
[23] CHASSAING E, CORNET M, KINH V Q. Influence of codeposited impurities on hydrogen permeation and properties of Ni-Mo and Co-Mo electrodeposited alloys[J]. Surface Technology, 1978, 7(2): 145-150
[24] CROUSIER J, EYRAUD M, CROUSIER J P, et al. Influence of substrate on the electrodeposition of nickel-molybdenum alloys[J]. Journal of Applied Electrochemistry, 1992, 22(8): 749-755
[25] HALIM J, ABDEL-KARIM R, EL-RAGHY S, et al. Electrodeposition and characterization of nanocrystalline Ni-Mo catalysts for hydrogen production[J]. Journal of Nanomaterials, 2012, 2012: 845673
[26] YAO Y, PANG X, GAO K. Investigation on hydrogen induced cracking behaviors of Ni-base alloy[J]. International Journal of Hydrogen Energy, 2011, 36(9): 5729-5738
[27] KAMACHI K. An X-ray study of hydrides formed in austenitic stainless steels[J]. Transactions of the Iron and Steel Institute of Japan, 1978, 18(8): 485-491
[28] WANG Q, LIU X, ZHU T, et al. Mechanism of hydrogen-induced defects and cracking in Ti and Ti-Mo alloy[J]. International Journal of Hydrogen Energy, 2023, 48(15): 5801-5809
[29] 张昕. 对电镀层内应力形成机理的研究[J]. 中小企业管理与科技(上旬刊), 2014(9): 308 ZHANG Xin. Study on the formation mechanism of internal stress in electroplating layer[J]. Management & Technology of SME, 2014(9): 308(in Chinese)
[30] 袁诗璞. 第十四讲: 镀层的内应力与脆性[J]. 电镀与涂饰, 2009, 28(10): 40-44 YUAN Shipu. Lecture 14——Internal stress and brittleness of coating[J]. Electroplating & Finishing, 2009, 28(10): 40-44(in Chinese)
[31] AHMADI K, BRANKOVIC S R, YARALI M, et al. Crack formation during electrodeposition and post-deposition aging of thin film coatings[R]. 2020, https://www.researchgate.net/publication/341849797
|