[1] ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage:Review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29):15072-15086
[2] DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy:An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7):3847-3869
[3] 常进法, 肖瑶, 罗兆艳, 等. 水电解制氢非贵金属催化剂的研究进展[J]. 物理化学学报, 2016, 32(7):1556-1592 CHANG Jinfa, XIAO Yao, LUO Zhaoyan, et al. Recent progress of non-noble metal catalysts in water electrolysis for hydrogen production[J]. Acta Physico-Chimica Sinica, 2016, 32(7):1556-1592(in Chinese)
[4] ZOU X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15):5148-5180
[5] URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis:Current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2):410-426
[6] XU B, ZHANG Y, PI Y, et al. Research progress of nickel-based metal-organic frameworks and their derivatives for oxygen evolution catalysis[J]. Acta Physico Chimica Sinica, 2020, doi:10.3866/PKU.WHXB202009074
[7] XUAN C, WANG J, ZHU J, et al. Recent progress of metal organic frameworks-based nanomaterials for electrocatalysis[J]. Acta Physico-Chimica Sin, 2017, 33(1):149-164
[8] MCCRORY C C, JUNG S, FERRER I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society, 2015, 137(13):4347-4357
[9] ZENG K, ZHANG D. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3):307-326
[10] FU S, SONG J, ZHU C, et al. Ultrafine and highly disordered Ni2Fe1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte[J]. Nano Energy, 2018, 44:319-326
[11] WANG C, YANG H, ZHANG Y, et al. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity[J]. Angewandte Chemie International Edition, 2019, 58(18):6099-6103
[12] PI Y, SHAO Q, WANG P, et al. Trimetallic oxyhydroxide coralloids for efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2017, 56(16):4502-4506
[13] WANG P, WAN L, LIN Y, et al. NiFe hydroxide supported on hierarchically porous nickel mesh as a high-performance bifunctional electrocatalyst for water splitting at large current density[J]. ChemSusChem, 2019, 12(17):4038-4045
[14] GONG M, LI Y, WANG H, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23):8452-8455
[15] FRIEBEL D, LOUIE M W, BAJDICH M, et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. Journal of the American Chemical Society, 2015, 137(3):1305-1313
[16] GAO M, SHENG W, ZHUANG Z, et al. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst[J]. Journal of the American Chemical Society, 2014, 136(19):7077-7084
[17] BURKE M S, KAST M G, TROTOCHAUD L, et al. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts:The role of structure and composition on activity, stability, and mechanism[J]. Journal of the American Chemical Society, 2015, 137(10):3638-3648
[18] WU G, CHEN W, ZHENG X, et al. Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction[J]. Nano Energy, 2017, 38:167-174
[19] TROTOCHAUD L, RANNEY J K, WILLIAMS K N, et al. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution[J]. Journal of the American Chemical Society, 2012, 134(41):17253-17261
[20] LI P, ZENG H. Sandwich-like nanocomposite of CoNiOx/reduced graphene oxide for enhanced electrocatalytic water oxidation[J]. Advanced Functional Materials, 2017, doi:10.1002/adfm.201606325
[21] ZHAO X, SHANG X, QUAN Y, et al. Electrodeposition-solvothermal access to ternary mixed metal Ni-Co-Fe sulfides for highly efficient electrocatalytic water oxidation in alkaline media[J]. Electrochimica Acta, 2017, 230:151-159
[22] DONG B, ZHAO X, HAN G, et al. Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2016, 4(35):13499-13508
[23] LUO P, SUN F, DENG J, et al. Tree-like NiS-Ni3S2/NF heterostructure array and its application in oxygen evolution reaction[J]. Acta Physico-Chimica Sinica, 2018, 34(12):1397-1404
[24] YIN Z, ZHU C, LI C, et al. Hierarchical nickel-cobalt phosphide yolk-shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting[J]. Nanoscale, 2016, 8(45):19129-19138
[25] SONG D, HONG D, KWON Y, et al. Highly porous Ni-P electrode synthesized by an ultrafast electrodeposition process for efficient overall water electrolysis[J]. Journal of Materials Chemistry A, 2020, 8(24):12069-12079
[26] GONG M, DAI H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Research, 2015, 8(1):23-39
[27] ZHAO J, ZHANG J, LI Z, et al. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction[J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, doi:10.1002/smll.202003916
[28] LI D, KOIKE M, WANG L, et al. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar[J]. ChemSusChem, 2014, 7(2):510-522
[29] MERKI D, VRUBEL H, ROVELLI L, et al. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution[J]. Chemical Science, 2012, 3(8):2515-2525
[30] LOUIE M W, BELL A T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2013, 135(33):12329-12337
[31] LIU Z, TANG B, GU X, et al. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2020.125170
[32] JIA X, ZHAO Y, CHEN G, et al. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets:An efficient overall water splitting electrocatalyst[J]. Advanced Energy Materials, 2016, doi:10.1002/aenm.201502585
[33] LIU G, HE D, YAO R, et al. Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting[J]. Nano Research, 2018, 11(3):1664-1675
[34] SHI R, WANG J, WANG Z, et al. Unique NiFeNiCoO2 hollow polyhedron as bifunctional electrocatalysts for water splitting[J]. Journal of Energy Chemistry, 2019, 33:74-80
[35] LIU G, YAO R, ZHAO Y, et al. Encapsulation of Ni/Fe3O4 heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation[J]. Nanoscale, 2018, 10(8):3997-4003
[36] CHE Q, LI Q, TAN Y, et al. One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density[J]. Applied Catalysis B:Environmental, 2019, 246:337-348
[37] ZHU K, LI M, LI X, et al. Enhancement of oxygen evolution performance through synergetic action between NiFe metal core and NiFeOx shell[J]. Chemical Communications, 2016, 52(79):11803-11806
|