[1] TURNER J A. A realizable renewable energy future[J]. Science, 1999, 285(5428): 687-689
[2] MARBÁN G, VALDÉS-SOLÍS T. Towards the hydrogen economy?[J]. International Journal of Hydrogen Energy, 2007, 32(12): 1625-1637
[3] GLENK G, REICHELSTEIN S. Economics of converting renewable power to hydrogen[J]. Nature Energy, 2019, 4: 216-222
[4] MILLET P, GRIGORIEV S. Water electrolysis technologies[M]//Amsterdam: Elsevier, 2013
[5] HASHEMI S M, MODESTINO M A, PSALTIS D. A membrane-less electrolyzer for hydrogen production across the pH scale[J]. Energy & Environmental Science, 2015, 8(7): 2003-2009
[6] GILLESPIE M I, VAN DER MERWE F, KRIEK R J. Performance evaluation of a membraneless divergent electrode-flow-through (DEFT) alkaline electrolyser based on optimisation of electrolytic flow and electrode gap[J]. Journal of Power Sources, 2015, 293: 228-235
[7] NIELD D A, BEJAN A. Convection in Porous Media[M]. New York: Springer New York, 2013
[8] MANNINEN M, TAIVASSALO V, ENERGY V, et al. On the mixture model for multiphase flow[R]: Technical Research Centre of Finland, Espoo (Finland), 1996
[9] NEWMAN J S, THOMAS-ALYEA K E. Electrochemical systems[M]. 3rd ed. Hoboken, NJ: Wiley, 2004
[10] KUNZ F. Modeling and simulation of an alkaline fuel cell [D]. Germany: Universität Duisburg-Essen, 2019
[11] OJONG E T, KWAN J T H, NOURI-KHORASANI A, et al. Development of an experimentally validated semi-empirical fully-coupled performance model of a PEM electrolysis cell with a 3-D structured porous transport layer[J]. International Journal of Hydrogen Energy, 2017, 42(41): 25831-25847
[12] RAJAEI H, RAJORA A, HAVERKORT J W. Design of membraneless gas-evolving flow-through porous electrodes[J]. Journal of Power Sources, 2021, 491: 229364
[13] RAJORA A, HAVERKORT J W. An analytical model for liquid and gas diffusion layers in electrolyzers and fuel cells[J]. Journal of the Electrochemical Society, 2021, 168(3): 034506
[14] GILLIAM R, GRAYDON J, KIRK D, et al. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures[J]. International Journal of Hydrogen Energy, 2007, 32(3): 359-364
[15] ZHOU G. Modeling and simulation of electrolyte transport in alkaline fuel cells[M]. Iowa City: University of Iowa, 2007
[16] AKERLOF G C, BENDER P. Thermodynamics of aqueous solutions of potassium Hydroxide[J]. Journal of the American Chemical Society, 1948, 70(7): 2366-2369
[17] ROBINSON R A, S R H. Electrolyte solutions [M]. New York: Dover Publications, 2002
[18] SÖHNEL O. Densities of aqueous solutions of inorganic substances [G]. Amsterdam: Elsevier. 1985
[19] BRATSCH S G. Standard electrode potentials and temperature coefficients in water at 298.15 K[J]. Journal of Physical and Chemical Reference Data, 1989, 18(1): 1-21
[20] SHENG W C, GASTEIGER H A, SHAO-HORN Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes[J]. Journal of the Electrochemical Society, 2010, 157(11): B1529
[21] IWATA R, ZHANG L, WILKE K L, et al. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting[J]. Joule, 2021, 5(4): 887-900
[22] 沈岑. 穿流电极无膜水电解的数值模拟与装置优化设计[D]. 天津: 天津大学, 2022 SHEN Cen. Numerical simulation and device optimization design of membrane-free water electrolysis with through-flow electrode[D]. Tianjin: Tianjin University, 2022(in Chinese)
|