[1] ALI Z S O, LARACHI F, ABATZOGLOU N, et al. Hydrogen production by glycerol steam reforming catalyzed by Ni-promoted Fe/Mg-bearing metallurgical wastes[J]. Applied Catalysis B: Environmental, 2017, 219: 183-193
[2] YAN Y, XIA B, XU Z, et al. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction[J]. ACS Catalysis, 2014, 4(6): 1693-1705
[3] JIAO Y, ZHENG Y, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086
[4] YAO J, HUANG W, FANG W, et al. Promoting electrocatalytic hydrogen evolution reaction and oxygen evolution reaction by fields: Effects of electric field, magnetic field, strain, and light[J]. Small Methods, 2020, 4(10): 2000494
[5] VALENTI M, JONSSON M P, BISKOS G, et al. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting[J]. Journal of Materials Chemistry A, 2016, 4(46): 17891-17912
[6] YAO G, LIU Q, ZHAO Z. Studied localized surface plasmon resonance effects of Au nanoparticles on TiO2 by FDTD simulations[J]. Catalysts, 2018, 8(6): 236
[7] LI Y, WEI J, SUN Z, et al. Greatly enhanced photocurrent density in bismuth ferrite films by Localized Surface Plasmon Resonance effect[J]. Applied Surface Science, 2022, 583: 152571
[8] 王海召, 陈雪冰, 张静, 等. 具有LSPR效应非贵金属的研究进展[J]. 当代化工研究, 2022(24): 22-24 WANG Haizhao, CHEN Xuebing, ZHANG Jing, et al. Research progress of non-precious metals with LSPR effect[J]. Modern Chemical Research, 2022(24): 22-24(in Chinese)
[9] 宋艳东. 基于Au、Ag三明治结构的表面等离子共振增强MoS2光电性能的研究[D]. 辽宁阜新: 辽宁工程技术大学, 2022 SONG Yandong. Enhanced photodetector performance of MoS2 via surface plasmon resonance coupling of Au and Ag nanoparticles with sandwich structure[D]. Liaoning Fuxin: Liaoning Technical University, 2022 (in Chinese)
[10] 孟祥钰, 詹琦, 武亚南, 等. 光热效应增强的Au/RGO/Na2Ti3O7光催化加氢性能[J]. 高等学校化学学报, 2022, 43(3): 136-147 MENG Xiangyu, ZHAN Qi, WU Yanan, et al. Photothermal enhanced photocatalytic hydrogenation performance of Au/RGO/Na2Ti3O7[J]. Chemical Journal of Chinese Universities, 2022, 43(3): 136-147(in Chinese)
[11] 张小燕. 光热效应增强的钴基氧化物/N-rGO双功能氧电极催化剂的设计、制备及其性能研究[D]. 浙江温州: 温州大学, 2021 ZHANG Xiaoyan. Design, preparation of cobalt-based oxide coupled with N-rGO bifunctional materials and their photothermal-enhanced electrocatalytic performance[D].Zhejiang Wenzhou: Wenzhou University, 2021 (in Chinese)
[12] IRSHAD M S, ARSHAD N, WANG X B. Nanoenabled photothermal materials for clean water production[J]. Global Challenges, 2021, 5(1): 2000055
[13] RINGE E, LANGILLE M R, SOHN K, et al. Plasmon length: A universal parameter to describe size effects in gold nanoparticles[J]. The Journal of Physical Chemistry Letters, 2012, 3(11): 1479-1483
[14] IRSHAD M S, ABBAS A, QAZI H H, et al. Role of point defects in hybrid phase TiO2 for resistive random-access memory (RRAM)[J]. Materials Research Express, 2019, 6(7): 076311
[15] ZHANG Y, LIANG C, WU J, et al. Recent advances in magnetic field-enhanced electrocatalysis[J]. ACS Applied Energy Materials, 2020, 3(11): 10303-10316
[16] SEO B, JOO S H. A magnetic boost[J]. Nature Energy, 2018, 3(6): 451-452
[17] LIN M, HOURNG L W, HSU J S. The effects of magnetic field on the hydrogen production by multielectrode water electrolysis[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(3): 352-357
[18] DODOO J, STOKES A A. Field-induced shaping of sessile paramagnetic drops[J]. Physics of Fluids, 2020, 32(6)
[19] SHI J, XU H, LU L, et al. Study of magnetic field to promote oxygen transfer and its application in zinc-air fuel cells[J]. Electrochimica Acta, 2013, 90: 44-52
[20] MATSUSHIMA H, IIDA T, FUKUNAKA Y, et al. PEMFC performance in a magnetic field[J]. Fuel Cells, 2008, 8(1): 33-36
[21] SETHURAMAN V A, VAIRAVAPANDIAN D, LAFOURESSE M C, et al. Role of elastic strain on electrocatalysis of oxygen reduction reaction on Pt[J]. The Journal of Physical Chemistry C, 2015, 119(33): 19042-19052
[22] BALZER R J, VOGT H. Effect of electrolyte flow on the bubble coverage of vertical gas-evolving electrodes[J]. Journal of the Electrochemical Society, 2003, 150(1): E11
[23] SHI Y, WANG J, WANG C, et al. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets[J]. Journal of the American Chemical Society, 2015, 137(23): 7365-7370
[24] ZHANG H, LI Y, LI M, et al. Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation[J]. Nanoscale, 2018, 10(5): 2236-2241
[25] WU X, WANG J, WANG Z, et al. Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection[J]. Angewandte Chemie International Edition, 2021, 60(17): 9416-9420
[26] WANG L, YANG R, FU J, et al. Vertically aligned W(Mo)S2/N-W(Mo)C-based light-assisted electrocatalysis for hydrogen evolution in acidic solutions[J]. Rare Metals, 2023, 42(5): 1535-1544
[27] ELIAS L, CHITHARANJAN H A. Effect of magnetic field on HER of water electrolysis on Ni-W alloy[J]. Electrocatalysis, 2017, 8(4): 375-382
[28] ZHOU W, CHEN M, GUO M, et al. Magnetic enhancement for hydrogen evolution reaction on ferromagnetic MoS2 catalyst[J]. Nano Letters, 2020, 20(4): 2923-2930
[29] SUN Z, ZHAO S, GU Z, et al. Understanding correlation between magnetism and electrocatalytic hydrogen evolution based on intrinsic properties of single MoS2 entity[J]. The Journal of Physical Chemistry Letters, 2023, 14(30): 6765-6771
[30] CAI L, HUO J, ZOU P, et al. Key role of Lorentz excitation in the electromagnetic-enhanced hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15243-15249
[31] ZHU H, GAO G, DU M, et al. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis[J]. Advanced Materials, 2018, 30(26): 1707301
[32] WANG M, WANG Z, GUO Z. Understanding of the intensified effect of super gravity on hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2009, 34(13): 5311-5317
[33] LIU G, LI P, ZHAO G, et al. Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution[J]. Journal of the American Chemical Society, 2016, 138(29): 9128-9136
[34] HU W, SHI Y, ZHOU Y, et al. Plasmonic hot charge carriers activated Ni centres of metal-organic frameworks for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2019, 7(17): 10601-10609
[35] XU J, GU P, BIRCH D J S, et al. Plasmon-promoted electrochemical oxygen evolution catalysis from gold decorated MnO2 nanosheets under green light[J]. Advanced Functional Materials, 2018, 28(31): 1801573
[36] JIN B, LI Y, WANG J, et al. Promoting oxygen evolution reaction of co-based catalysts (Co3O4, CoS, CoP, and CoN) through photothermal effect[J]. Small, 2019, 15(44): 1903847
[37] NIETHER C, FAURE S, BORDET A, et al. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles[J]. Nature Energy, 2018, 3(6): 476-483
[38] ZHANG Y, GUO P, LI S, et al. Magnetic field assisted electrocatalytic oxygen evolution reaction of nickel-based materials[J]. Journal of Materials Chemistry A, 2022, 10(4): 1760-1767
[39] WU T, REN X, SUN Y, et al. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation[J]. Nature Communications, 2021, 12: 3634
[40] SUN T, TANG Z, ZANG W, et al. Ferromagnetic single-atom spin catalyst for boosting water splitting[J]. Nature Nanotechnology, 2023, 18(7): 763-771
[41] BI J, CAI H, WANG B, et al. Localized surface plasmon enhanced electrocatalytic methanol oxidation of AgPt bimetallic nanoparticles with an ultra-thin shell[J]. Chemical Communications, 2019, 55(27): 3943-3946
[42] ZHANG K, WANG C, YOU H, et al. Advanced Plasmon-driven ethylene glycol oxidation over 3D ultrathin Lotus-like PdCu nanosheets[J]. Chemical Engineering Journal, 2022, 438: 135666
[43] YAN Y, WANG Q, HAO P, et al. Photoassisted strategy to promote glycerol electrooxidation to lactic acid coupled with hydrogen production[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23265-23275
[44] ZHU M, WANG Y, WU Y, et al. Greatly enhanced methanol oxidation reaction of CoPt truncated octahedral nanoparticles by external magnetic fields[J]. Energy & Environmental Materials, 2023, 6(5): 12403
[45] GAO R, KODAIMATI M S, HANDY K M, et al. Generating oscillatory behavior by applying a magnetic field during electrocatalytic oxidation of glycerol[J]. The Journal of Physical Chemistry C, 2022, 126(42): 18159-18169
[46] ZHANG N, FENG Y, ZHU X, et al. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires[J]. Advanced Materials, 2017, 29(7): 1603774
|