[1] BAYKARA S Z. Hydrogen: A brief overview on its sources, production and environmental impact[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10605-10614
[2] 张浩杰, 张雯, 姜丰, 等. 太阳能光解水制氢的核心催化剂及多场耦合研究进展[J]. 化学工业与工程, 2022, 39(1): 1-10 ZHANG Haojie, ZHANG Wen, JIANG Feng, et al. Progress of the key catalyst for solar photolysis of water to produce hydrogen and research on multi-field coupling[J]. Chemical Industry and Engineering, 2022, 39(1): 1-10(in Chinese)
[3] 于娇娇, 苏伟, 孙艳. 水制氢技术研究进展[J]. 化学工业与工程, 2012, 29(5): 58-63 YU Jiaojiao, SU Wei, SUN Yan. Progress in hydrogen production from water[J]. Chemical Industry and Engineering, 2012, 29(5): 58-63(in Chinese)
[4] SONG X, WEI G, SUN J, et al. Overall photocatalytic water splitting by an organolead iodide crystalline material[J]. Nature Catalysis, 2020, 3: 1027-1033
[5] BANERJEE T, PODJASKI F, KRÖGER J, et al. Polymer photocatalysts for solar-to-chemical energy conversion[J]. Nature Reviews Materials, 2021, 6: 168-190
[6] SCHNEIDER J, BAHNEMANN D W. Undesired role of sacrificial reagents in photocatalysis[J]. The Journal of Physical Chemistry Letters, 2013, 4(20): 3479-3483
[7] DAS R, CHAKRABORTY S, PETER S C. Systematic assessment of solvent selection in photocatalytic CO2 reduction[J]. ACS Energy Letters, 2021, 6(9): 3270-3274
[8] KUMARAVEL V, IMAM M, BADRELDIN A, et al. Photocatalytic hydrogen production: Role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts[J]. Catalysts, 2019, 9(3): 276
[9] SINGH S, KANSAL S K. Recent progress in red phosphorus-based photocatalysts for photocatalytic water remediation and hydrogen production[J]. Applied Materials Today, 2022, 26: 101345
[10] WU C, JING L, DENG J, et al. Elemental red phosphorus-based photocatalysts for environmental remediation: A review[J]. Chemosphere, 2021, 274: 129793
[11] FUNG C M, ER C C, TAN L, et al. Red phosphorus: An up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation[J]. Chemical Reviews, 2022, 122(3): 3879-3965
[12] 鲍二蓬, 张硕卿, 邹吉军, 等. 特殊形貌光催化剂的研究进展[J]. 化学工业与工程, 2021, 38(2): 19-29 BAO Erpeng, ZHANG Shuoqing, ZOU Jijun, et al. Research progress on special-morphology photocatalysts[J]. Chemical Industry and Engineering, 2021, 38(2): 19-29(in Chinese)
[13] ALI A S, ANSARI M S, CHO M H. Metal free earth abundant elemental red phosphorus: A new class of visible light photocatalyst and photoelectrode materials[J]. Physical Chemistry Chemical Physics, 2016, 18(5): 3921-3928
[14] SHEN Z, HU Z, WANG W, et al. Crystalline phosphorus fibers: Controllable synthesis and visible-light-driven photocatalytic activity[J]. Nanoscale, 2014, 6(23): 14163-14167
[15] YUAN Y, CAO S, LIAO Y, et al. Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production[J]. Applied Catalysis B: Environmental, 2013, 140/141: 164-168
[16] JIA G, SUN M, WANG Y, et al. Enabling efficient photocatalytic hydrogen evolution via in situ loading of Ni single atomic sites on red phosphorus quantum dots[J]. Advanced Functional Materials, 2023, 33(10): 2212051
[17] ZHU Y, LI J, DONG C, et al. Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water[J]. Applied Catalysis B: Environmental, 2019, 255: 117764
[18] WANG M, XU S, ZHOU Z, et al. Atomically dispersed Janus nickel sites on red phosphorus for photocatalytic overall water splitting[J]. Angewandte Chemie (International Ed in English), 2022, 61(29): e202204711
[19] LIU F, SHI R, WANG Z, et al. Direct Z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting[J]. Angewandte Chemie (International Ed in English), 2019, 58(34): 11791-11795
[20] MATSUMOTO Y. Energy positions of oxide semiconductors and photocatalysis with iron complex oxides[J]. Journal of Solid State Chemistry, 1996, 126(2): 227-234
[21] LIU Q, ZHANG X, WANG J, et al. Crystalline red phosphorus nanoribbons: Large-scale synthesis and electrochemical nitrogen fixation[J]. Angewandte Chemie (International Ed in English), 2020, 59(34): 14383-14387
[22] NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770
[23] JING L, ZHU R, PHILLIPS D L, et al. Effective prevention of charge trapping in graphitic carbon nitride with nanosized red phosphorus modification for superior photo(electro) catalysis[J]. Advanced Functional Materials, 2017, 27(46): 1703484
[24] HU E, CHEN Q, GAO Q, et al. Cyano-functionalized graphitic carbon nitride with adsorption and photoreduction isosite achieving efficient uranium extraction from seawater[J]. Advanced Functional Materials, 2024, 34(19): 2312215
[25] ZHU M, KIM S, MAO L, et al. Metal-free photocatalyst for H2 evolution in visible to near-infrared region: Black phosphorus/graphitic carbon nitride[J]. Journal of the American Chemical Society, 2017, 139(37): 13234-13242
[26] YE H, GONG N, CAO Y, et al. Insights into the role of protonation in covalent triazine framework-based photocatalytic hydrogen evolution[J]. Chemistry of Materials, 2022, 34(4): 1481-1490
|