[1] ZHOU P, NAVID I A, MA Y, et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting[J]. Nature, 2023, 613: 66-70
[2] LIU L, MENG H, CHAI Y, et al. Enhancing built-in electric fields for efficient photocatalytic hydrogen evolution by encapsulating C60 fullerene into zirconium-based metal-organic frameworks[J]. Angewandte Chemie (International Ed in English), 2023, 62(11): e202217897
[3] XU X, ZHAO Y, LIU Y. Wearable electronics based on stretchable organic semiconductors[J]. Small, 2023, 19(20): 2206309
[4] WANG D, LU L, ZHAO Z, et al. Large area polymer semiconductor sub-microwire arrays by coaxial focused electrohydrodynamic jet printing for high-performance OFETs[J]. Nature Communications, 2022, 13: 6214
[5] LEE S, CHANG C. Recent developments about conductive polymer based composite photocatalysts[J]. Polymers, 2019, 11(2): 206
[6] XU J, LI W, LIU W, et al. Efficient photocatalytic hydrogen and oxygen evolution by side-group engineered benzodiimidazole oligomers with strong built-in electric fields and short-range crystallinity[J]. Angewandte Chemie International Edition, 2022, 61(45): 2212243
[7] YANG J, JING J, LI W, et al. Electron donor-acceptor interface of TPPS/PDI boosting charge transfer for efficient photocatalytic hydrogen evolution[J]. Advanced Science, 2022, 9(17): e2201134
[8] ZHU X, LIN Y, SANMARTIN J, et al. Lead halide perovskites for photocatalytic organic synthesis[J]. Nature Communications, 2019, 10: 2843
[9] ZHU X, LIN Y, SUN Y, et al. Lead-halide perovskites for photocatalytic α-alkylation of aldehydes[J]. Journal of the American Chemical Society, 2019, 141(2): 733-738
[10] LI Y, WANG L, GAO X, et al. Constructing TPNCN heterojunction with strong built-in electric field via π-π stacking interaction boosting the CO2 photoreduction performance.[J]. Mate Chem, A, 2024, 12: 7807-7816
[11] ZHU X, WANG Z, JIA Y, et al. Supramolecular polymerization of chiral platinum(II) complexes: Transformable nanoassemblies and their amplified circularly polarized luminescence[J]. Journal of Materials Chemistry C, 2023, 11(34): 11671-11680
[12] ZHU X, MIAO H, SHAN Y, et al. Two-dimensional Janus film with Au nanoparticles assembled on trinuclear gold(I) pyrazolate coordination nanosheets for photocatalytic H2 evolution[J]. Inorganic Chemistry, 2022, 61(34): 13591-13599
[13] ZHU X, FAN Q, LUO W, et al. Anthrazoline photocatalyst for promoting esterification and etherification reactions via photoredox/nickel dual catalysis[J]. Chinese Journal of Chemistry, 2023, 41(4): 411-416
[14] WANG D, HUANG H, ZHU X. Development of anthrazoline photocatalysts for promoting amination and amidation reactions[J]. Chemical Communications, 2022, 58(21): 3529-3532
[15] HAN C, ZHU X, MARTIN J, et al. Recent progress in engineering metal halide perovskites for efficient visible-light-driven photocatalysis[J]. ChemSusChem, 2020, 13(16): 4005-4025
[16] WANG K, LU H, ZHU X, et al. Ultrafast reaction mechanisms in perovskite based photocatalytic C-C coupling[J]. ACS Energy Letters, 2020, 5(2): 566-571
[17] HU Y, WANG J, YAN C, et al. The multifaceted potential applications of organic photovoltaics[J]. Nature Reviews Materials, 2022, 7: 836-838
[18] SERPONE N, EMELINE A V, RYABCHUK V K, et al. Why do hydrogen and oxygen yields from semiconductor-based photocatalyzed water splitting remain disappointingly low? intrinsic and extrinsic factors impacting surface redox reactions[J]. ACS Energy Letters, 2016, 1(5): 931-948
[19] CLEMONS T D, STUPP S I. Design of materials with supramolecular polymers[J]. Progress in Polymer Science, 2020, 111: 101310
[20] NAVALÓN S, DHAKSHINAMOORTHY A, ÁLVARO M, et al. Metal-organic frameworks as photocatalysts for solar-driven overall water splitting[J]. Chemical Reviews, 2023, 123(1): 445-490
[21] GUO Y, ZHOU Q, ZHU B, et al. Advances in organic semiconductors for photocatalytic hydrogen evolution reaction[J]. EES Catalysis, 2023, 1(4): 333-352
[22] JIN E, GENG K, FU S, et al. Exceptional electron conduction in two-dimensional covalent organic frameworks[J]. Chem, 2021, 7(12): 3309-3324
[23] SATO H, ABD RAHMAN S A, YAMADA Y, et al. Conduction band structure of high-mobility organic semiconductors and partially dressed polaron formation[J]. Nature Materials, 2022, 21: 910-916
[24] SHAN Y, WANG J, GUO Z, et al. Surface-doping-induced mobility modulation effect for transport enhancement in organic single-crystal transistors[J]. Advanced Materials, 2023, 35(3): e2205517
[25] SUN F, TAN S, CAO H, et al. Facile construction of new hybrid conjugation via boron cage extension[J]. Journal of the American Chemical Society, 2023, 145(6): 3577-3587
[26] KAMAT P V, JIN S. Semiconductor photocatalysis: "Tell us the complete story!"[J]. ACS Energy Letters, 2018, 3(3): 622-623
[27] SCHNEIDER J, BAHNEMANN D W. Undesired role of sacrificial reagents in photocatalysis[J]. The Journal of Physical Chemistry Letters, 2013, 4(20): 3479-3483
[28] YANG Y, CHU X, ZHANG H, et al. Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting[J]. Nature Communications, 2023, 14: 593
[29] ZHANG J, BAI T, HUANG H, et al. Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting[J]. Advanced Materials, 2020, 32(49): e2004747
[30] ZHAO H, MAO Q, JIAN L, et al. Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms[J]. Chinese Journal of Catalysis, 2022, 43(7): 1774-1804
[31] ZHAO H, JIAN L, GONG M, et al. Transition-metal-based cocatalysts for photocatalytic water splitting[J]. Small Structures, 2022, 3(7): 2100229
[32] LI Y, WANG Z, XIA T, et al. Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis[J]. Advanced Materials, 2016, 28(32): 6959-6965
[33] LI X, BI W, ZHANG L, et al. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution[J]. Advanced Materials, 2016, 28(12): 2427-2431
[34] WANG L, TANG R, KHERADMAND A, et al. Enhanced solar-driven benzaldehyde oxidation with simultaneous hydrogen production on Pt single-atom catalyst[J]. Applied Catalysis B: Environmental, 2021, 284: 119759
[35] ZHOU P, LI N, CHAO Y, et al. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature[J]. Angewandte Chemie (International Ed in English), 2019, 58(40): 14184-14188
[36] CAO S, LI H, TONG T, et al. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution[J]. Advanced Functional Materials, 2018, 28(32): 1802169
[37] CHEN Z, BU Y, WANG L, et al. Single-sites Rh-phosphide modified carbon nitride photocatalyst for boosting hydrogen evolution under visible light[J]. Applied Catalysis B: Environmental, 2020, 274: 119117
[38] ZHANG W, PENG Q, SHI L, et al. Merging single-atom-dispersed iron and graphitic carbon nitride to a joint electronic system for high-efficiency photocatalytic hydrogen evolution[J]. Small, 2019, 15(50): 1905166
[39] CAO Y, CHEN S, LUO Q, et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst[J]. Angewandte Chemie International Edition, 2017, 56(40): 12191-12196
[40] LI Y, WANG Y, DONG C, et al. Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting[J]. Chemical Science, 2021, 12(10): 3633-3643
[41] HAN C, WU L, GE L, et al. AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation[J]. Carbon, 2015, 92: 31-40
[42] BAI S, YANG L, WANG C, et al. Boosting photocatalytic water splitting: Interfacial charge polarization in atomically controlled core-shell cocatalysts[J]. Angewandte Chemie (International Ed in English), 2015, 54(49): 14810-14814
[43] XU Z, KIBRIA M G, ALOTAIBI B, et al. Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect?[J]. Applied Catalysis B: Environmental, 2018, 221: 77-85
[44] BHUNIA K, CHANDRA M, KHILARI S, et al. Bimetallic PtAu alloy nanoparticles-integrated g-C3N4 hybrid as an efficient photocatalyst for water-to-hydrogen conversion[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 478-488
[45] BAI Y, HU Z, JIANG J, et al. Hydrophilic conjugated materials for photocatalytic hydrogen evolution[J]. Chemistry, an Asian Journal, 2020, 15(12): 1780-1790
[46] JIANG D, CHOI C K, HONDA K, et al. Photosensitized hydrogen evolution from water using conjugated polymers wrapped in dendrimeric electrolytes[J]. Journal of the American Chemical Society, 2004, 126(38): 12084-12089
[47] LU H, HU R, BAI H, et al. Efficient conjugated polymer-methyl viologen electron transfer system for controlled photo-driven hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10355-10359
[48] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visiblelight[J]. Nature Materials, 2009, 8: 76-80
[49] XIAO Y, TIAN G, LI W, et al. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019, 141(6): 2508-2515
[50] CHEN X, SHI R, CHEN Q, et al. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting[J]. Nano Energy, 2019, 59: 644-650
[51] SPRICK R S, JIANG J, BONILLO B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution[J]. Journal of the American Chemical Society, 2015, 137(9): 3265-3270
[52] BI S, YANG C, ZHANG W, et al. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms[J]. Nature Communications, 2019, 10: 2467
[53] WANG L, JIANG W L, GUO S, et al. Robust singlet fission process in strong absorption π-expanded diketopyrrolopyrroles[J]. Chemical Science, 2022, 13(46): 13907-13913
[54] JING J, YANG J, ZHANG Z, et al. Supramolecular zinc porphyrin photocatalyst with strong reduction ability and robust built-in electric field for highly efficient hydrogen production[J]. Advanced Energy Materials, 2021, 11(32): 2101392
[55] SCHWARZE M, TRESS W, BEYER B, et al. Band structure engineering in organic semiconductors[J]. Science, 2016, 352(6292): 1446-1449
[56] LIN L, LIN Z, ZHANG J, et al. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting[J]. Nature Catalysis, 2020, 3: 649-655
[57] CHEN R, PANG S, AN H, et al. Charge separation via asymmetric illumination in photocatalytic Cu2O particles[J]. Nature Energy, 2018, 3: 655-663
[58] LUO Z, YE X, ZHANG S, et al. Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts[J]. Nature Communications, 2022, 13: 2230
[59] LI F, HAN G, NOH H J, et al. Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis[J]. Nature Communications, 2019, 10: 4060
[60] ZHANG G, YANG T, ZHANG J, et al. Clarifying the active site role of meso-carboxyphenyl group for free base porphyrins in photocatalytic H2 evolution reaction[J]. ChemCatChem, 2023, 15(2): e202201271
[61] YUAN Y, ZHOU L, ROBATJAZI H, et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination[J]. Science, 2022, 378(6622): 889-893
[62] JIAN J, LIU Q, LI Z, et al. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of[FeFe]-hydrogenase[J]. Nature Communications, 2013, 4: 2695
[63] ZHOU Q, GUO Y, YE ZQ, et al. Carbon nitride photocatalyst with internal electric field induced photogenerated carriers spatial enrichment for enhanced photocatalytic water splitting[J]. Materials Today, 2022, 58: 100-109
[64] ZHOU P, CHEN H, CHAO Y, et al. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production[J]. Nature Communications, 2021, 12: 4412
[65] HE X, ZHU G, YANG J, et al. Photogenerated intrinsic free carriers in small-molecule organic semiconductors visualized by ultrafast spectroscopy[J]. Scientific Reports, 2015, 5: 17076
[66] GUO J, ZENG Y, ZHEN Y, et al. Non-equal ratio cocrystal engineering to improve charge transport characteristics of organic semiconductors: A case study on indolo[2, 3-a]carbazole[J]. Angewandte Chemie (International Ed in English), 2022, 61(28): e202202336
[67] FU S, JIN E, HANAYAMA H, et al. Outstanding charge mobility by band transport in two-dimensional semiconducting covalent organic frameworks[J]. Journal of the American Chemical Society, 2022, 144(16): 7489-7496
[68] WANG C, DONG H, HU W, et al. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics[J]. Chemical Reviews, 2012, 112(4): 2208-2267
[69] MARTA M T, CONCEPCIÓ R. Role of molecular order and solid-state structure in organic field-effect transistors[J]. Chemical Reviews, 2011, 111(8): 4833-4856
[70] STEGBAUER L, ZECH S, SAVASCI G, et al. Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation[J]. Advanced Energy Materials, 2018, 8(24): 1703278
[71] URIBE-ROMO F J, HUNT J R, FURUKAWA H, et al. A crystalline imine-linked 3D porous covalent organic framework[J]. Journal of the American Chemical Society, 2009, 131(13): 4570-4571
[72] GHOSH S, KOUAMÉ N A, RAMOS L, et al. Conducting polymer nanostructures for photocatalysis under visible light[J]. Nature Materials, 2015, 14: 505-511
[73] PLANELLS M, ABATE A, HOLLMAN D J, et al. Diacetylene bridged triphenylamines as hole transport materials for solid state dye sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1(23): 6949-6960
[74] FIGUEIRA-DUARTE T M, MVLLEN K. Pyrene-based materials for organic electronics[J]. Chemical Reviews, 2011, 111(11): 7260-7314
[75] WANG K, YANG L, WANG X, et al. Covalent triazine frameworks via a low-temperature polycondensation approach[J]. Angewandte Chemie (International Ed in English), 2017, 56(45): 14149-14153
[76] LIU M, HUANG Q, WANG S, et al. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers[J]. Angewandte Chemie (International Ed in English), 2018, 57(37): 11968-11972
[77] ZHANG Z, CHEN X, ZHANG H, et al. A highly crystalline perylene imide polymer with the robust built-In electric field for efficient photocatalytic water oxidation[J]. Advanced Materials, 2020, 32(32): 1907746
[78] LIU Y, LIAO Z, MA X, et al. Ultrastable and efficient visible-light-driven hydrogen production based on donor-acceptor copolymerized covalent organic polymer[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30698-30705
[79] SHU C, HAN C, YANG X, et al. Boosting the photocatalytic hydrogen evolution activity for D-π-A conjugated microporous polymers by statistical copolymerization[J]. Advanced Materials, 2021, 33(26): 2008498
[80] SACHS M, SPRICK R S, PEARCE D, et al. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution[J]. Nature Communications, 2018, 9: 4968
[81] DENG J, LUO J, MAO Y, et al. π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks[J]. Science Advances, 2020, 6(2): eaax9976
[82] KUMAR S, SHUKLA J, KUMAR Y, et al. Electron-poor arylenediimides[J]. Organic Chemistry Frontiers, 2018, 5(14): 2254-2276
[83] GAO G, CHEN M, ROBERTS J, et al. Rational functionalization of a C70 buckybowl to enable a C70: Buckybowl cocrystal for organic semiconductor applications[J]. Journal of the American Chemical Society, 2020, 142(5): 2460-2470
[84] LU T, CHEN Q. A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure[J]. Theoretical Chemistry Accounts, 2020, 139(2): 25
[85] GUO Y, ZHOU Q, NAN J, et al. Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution[J]. Nature Communications, 2022, 13: 2067
[86] WANG Z, MEDFORTH C J, SHELNUTT J A. Self-metallization of photocatalytic porphyrin nanotubes[J]. Journal of the American Chemical Society, 2004, 126(51): 16720-16721
[87] GUO P, CHEN P, LIU M. One-dimensional porphyrin nanoassemblies assisted via graphene oxide: Sheetlike functional surfactant and enhanced photocatalytic behaviors[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 5336-5345
[88] ZHANG Z, ZHU Y, CHEN X, et al. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution[J]. Advanced Materials, 2019, 31(7): e1806626
[89] ZHU X, JIA Y, LIU Y, et al. Enhancing built-in electric fields via molecular symmetry modulation in supramolecular photocatalysts for highly efficient photocatalytic hydrogen evolution[J]. Angewandte Chemie (International Ed in English), 2024, 63(26): e202405962
[90] WANG X, CHEN L, CHONG S, et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water[J]. Nature Chemistry, 2018, 10: 1180-1189
[91] WENG W, GUO J. The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution[J]. Nature Communications, 2022, 13: 5768
[92] XU M, LAI C, LIU X, et al. COF-confined catalysts: From nanoparticles and nanoclusters to single atoms[J]. Journal of Materials Chemistry A, 2021, 9(43): 24148-24174
[93] LIN Z, GUO J. Covalent organic frameworks for photocatalytic hydrogen evolution: Design, strategy, and structure-to-performance relationship[J]. Macromolecular Rapid Communications, 2023, 44(11): e2200719
[94] YANG Q, LUO M, LIU K, et al. Covalent organic frameworks for photocatalytic applications[J]. Applied Catalysis B: Environmental, 2020, 276: 119174
[95] STEGBAUER L, SCHWINGHAMMER K, LOTSCH B V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production[J]. Chemical Science, 2014, 5(7): 2789-2793
[96] ONG W J, TAN L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329
[97] MAMBA G, MISHRA A K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B: Environmental, 2016, 198: 347-377
[98] WANG X, BLECHERT S, ANTONIETTI M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis, 2012, 2(8): 1596-1606
[99] LIAO G, GONG Y, ZHANG L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: The "holy grail" for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy & Environmental Science, 2019, 12(7): 2080-2147
[100] ZHANG Z, LEINENWEBER K, BAUER M, et al. High-pressure bulk synthesis of crystalline C6N9H3·HCl: A novel C3N4 graphitic derivative[J]. Journal of the American Chemical Society, 2001, 123(32): 7788-7796
[101] LIN L, OU H, ZHANG Y, et al. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis[J]. ACS Catalysis, 2016, 6(6): 3921-3931
[102] LIN L, YU Z, WANG X. Crystalline carbon nitride semiconductors for photocatalytic water splitting[J]. Angewandte Chemie International Edition, 2019, 58(19): 6164-6175
[103] BOJDYS M J, MVLLER J O, ANTONIETTI M, et al. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride[J]. Chemistry, 2008, 14(27): 8177-8182
[104] SUN J, ZHEN W, XUE C. Magnetic template-assisted construction of 2D PCN/TiO2 heterostructures for efficient photocatalytic hydrogen generation[J]. Applied Surface Science, 2023, 623: 157131
[105] WANG Y, ZHANG J, WANG X, et al. Boron- and fluorine-containing mesoporous carbon nitride polymers: Metal-free catalysts for cyclohexane oxidation[J]. Angewandte Chemie (International Ed in English), 2010, 49(19): 3356-3359
[106] LIN Z, WANG X. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angewandte Chemie (International Ed in English), 2013, 52(6): 1735-1738
[107] DONG G, ZHAO K, ZHANG L. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4[J]. Chemical Communications, 2012, 48(49): 6178
[108] YAN H. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light[J]. Chemical Communications, 2012, 48(28): 3430-3432
[109] LIU J, LI W, DUAN L, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015, 15(8): 5137-5142
[110] SHE X, WU J, ZHONG J, et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency[J]. Nano Energy, 2016, 27: 138-146
[111] WANG Y, DI Y, ANTONIETTI M, et al. Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids[J]. Chemistry of Materials, 2010, 22(18): 5119-5121
[112] GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9): 5464-5519
[113] LIU G, ZHAO G, ZHOU W, et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production[J]. Advanced Functional Materials, 2016, 26(37): 6822-6829
[114] XU S, ZHOU P, ZHANG Z, et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using O2 and a photocatalyst of co-thioporphyrazine bonded to g-C3N4[J]. Journal of the American Chemical Society, 2017, 139(41): 14775-14782
[115] CHEN X, WANG J, CHAI Y, et al. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction[J]. Advanced Materials, 2021, 33(7): e2007479
[116] CHEN R, SHI J, MA Y, et al. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis[J]. Angewandte Chemie (International Ed in English), 2019, 58(19): 6430-6434
[117] LIU B, SUN H, LEE J, et al. Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization[J]. Nature Communications, 2023, 14: 967
|