[1] Sprynskyy M, Lebedynets M, Namies'nik J, et al. Phenolics occurrence in surface water of the Dniester river basin (West Ukraine):Natural background and industrial pollution[J]. Environmental Geology, 2007, 53(1):67-75
[2] Imran M, Crowley D E, Khalid A, et al. Microbial biotechnology for decolorization of textile wastewaters[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(1):73-92
[3] Cheremisinoff N P. Agency for toxic substances and disease registry (ATSDR)[M]//Pollution Control Handbook for Oil and Gas Engineering. Hoboken, NJ, USA:John Wiley & Sons Inc., 2016
[4] Ribeiro H B, Bampi J, Silva T C, et al. Study of phenol biodegradation in different agitation systems and fixed bed column:Experimental, mathematical modeling, and numerical simulation[J]. Environmental Science and Pollution Research, 2020, 27(36):45250-45269
[5] Yu Z, Feng X, Min X, et al. RGO/PDA/Bi12O17Cl2:TiO2 composite membranes based on Bi12O17Cl2:TiO2 heterojunctions with excellent photocatalytic activity for photocatalytic dyes degradation and oil:Water separation[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(19):18246-18258
[6] Fan X, Li S, Sun M, et al. Degradation of phenol by coal-based carbon membrane integrating sulfate radicals-based advanced oxidation processes[J]. Ecotoxicology and Environmental Safety, 2019, doi:10.1016/j.ecoenv.2019.109662
[7] 王祥名,吴松海,王琮,等. Cu2(NO3)(OH)3 催化过硫酸盐降解苯酚[J]. 化学工业与工程,2021,38(1):69-78 Wang Xiangming, Wu Songhai, Wang Cong, et al. Catalytic degradation of phenol by persulfate activation using Cu2(NO3)(OH)3[J]. Chemical Industry and Engineering, 2021, 38(1):69-78(in Chinese)
[8] Kondrakov A O, Ignatev A N, Frimmel F H, et al. Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis:A comparative study[J]. Applied Catalysis B:Environmental, 2014, 160/161:106-114
[9] Ratnawati R, Enjarlis E, Husnil Y A, et al. Degradation of phenol in pharmaceutical wastewater using TiO2/pumice and O3/active carbon[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2020, 15(1):146-154
[10] Lee Y, Kovalova L, McArdell C S, et al. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent[J]. Water Research, 2014, 64:134-148
[11] Qiu C, Yuan S, Li X, et al. Investigation of the synergistic effects for p-nitrophenol mineralization by a combined process of ozonation and electrolysis using a boron-doped diamond anode[J]. Journal of Hazardous Materials, 2014, 280:644-653
[12] He K, Dong Y, Li Z, et al. Catalytic ozonation of phenol in water with natural brucite and magnesia[J]. Journal of Hazardous Materials, 2008, 159(2/3):587-592
[13] Liotta L F, Gruttadauria M, Di Carlo G, et al. Heterogeneous catalytic degradation of phenolic substrates:Catalysts activity[J]. Journal of Hazardous Materials, 2009, 162(2/3):588-606
[14] Luna-Sanguino G, Tolosana-Moranchel A, Carbajo J, et al. Role of surrounding crystallization media in TiO2 polymorphs coexistence and the effect on AOPs performance[J]. Molecular Catalysis, 2020, doi:10.1016/j.mcat.2020.111059
[15] Chen J, Tian S, Lu J, et al. Catalytic performance of MgO with different exposed crystal facets towards the ozonation of 4-chlorophenol[J]. Applied Catalysis A:General, 2015, 506:118-125
[16] Kang Y, Kim M K, Zoh K D. Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis[J]. Chemosphere, 2018, 204:148-155
[17] Akharame M O, Fatoki O S, Opeolu B O, et al. Comparative time-based intermediates study of ozone oxidation of 4-chloro- and 4-nitrophenols followed by LCMS-TOF[J]. Journal of Environmental Science and Health, Part A, 2020, 55(4):385-401
[18] 王芳, 王雪芹, 程凯, 等. MoS2负载量对MoS2/TiO2光催化降解苯酚效率的影响及其作用机理研究[J]. 燃料化学学报, 2017, 45(8):1001-1008 Wang Fang, Wang Xueqin, Cheng Kai, et al. Effect of MoS2 loading on the photocatalytic performance of MoS2/TiO2 nanocomposites in phenol degradation and the corresponding reaction mechanism analysis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8):1001-1008(in Chinese)
[19] Murshed S M S, Leong K C, Yang C. Thermophysical and electrokinetic properties of nanofluids:A critical review[J]. Applied Thermal Engineering, 2008, 28(17/18):2109-2125
[20] Zhao L, Ma J, Sun Z. Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution[J]. Applied Catalysis B:Environmental, 2008, 79(3):244-253
|