[1] 孙俊艳. 改性ACF/纳米TiO2光催化净化H2S气体的研究[D]. 石家庄:河北科技大学, 2012
[2] Ma G, Ya N, Shi J,et al. Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation[J]. J. Catalysis, 2008, 260(1):134-140
[3] Ma W, Han J, Yu W, et al. Integrating perovskite photovoltaics and free catalysts toward efficient solar energy conversion and H2S splitting[J]. ACS Catalysis, 2016, 6(9):6198-6206
[4] Ma G, Yan H, Zong X, et al. Photocatalytic splitting of H2S to produce hydrogen by solid phase reaction[J]. Chin J Catal, 2008, 29(4):313-315
[5] Preethi V, Kanmani S. Photocatalytic hydrogen production[J]. Materials Science in Semiconductor Processing, 2013, 16(3):561-575
[6] Yu S, Zhou Y. Advanced catalytic materials-photocatalysis and other current trends:Photochemical decomposition of hydrogen sulfide[M]. Intech, 2016
[7] 白雪峰, 吴丹, 王鹏. 硫化氢光催化分解制氢[J]. 太阳能学报, 2008, 29(10):1256-1261 Xuefeng B, Dan W, Peng W. Photodecomposition of hydrogen sulfide to produce hydrogen[J]. Acta Energiae Solaris Sinica, 2008, 29(10):1256-1261(in Chinese)
[8] Shi J, Yan X, Cui H, et al. Low-Temperature synthesis of CdS/TiO2 composite photocatalysts:Influence of synthetic procedure on photocatalytic activity under visible light[J]. J Mol Catal A:Chemical, 2012, 356:53-60
[9] Zhang K, Guo L. Metal sulphide semiconductors for photocatalytic hydrogen production[J]. Catalysis Science & Technology, 2013, 31(7):1672-1690
[10] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238:37-38
[11] Liu L, Chen X. Titanium dioxide nanomaterials:Self-Structural modifications[J]. Chem Rev, 2014, 114(19):98909-98918
[12] Kubacka A, Fernandez-Garcia M, Colon G. Advanced nanoarchitectures for solar photocatalytic applications[J]. Chem Rev, 2012,112(3):1555-1614
[13] Chen X, Liu L, Yu P, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018):746-750
[14] Wang G, Wang H, Ling Y, et al. Hydrogen-Treated TiO2 nanowire arrays for photoelectrochemical water splitting[J]. Nano Lett, 2011, 11(7):3026-3033
[15] Zhu G, Yin H, Yang C, et al. Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting[J]. Chem Cat Chem, 2015, 7(17):2614-2619
[16] Xing M, Fang W, Nasir M, et al. Self-Doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis[J]. Catalysis, 2013, 297:236-243
[17] Saputera W H, Mul G, Hamdy M S. Ti3+-Containing titania:Synthesis tactics and photocatalytic performance[J]. Catal Today, 2015, 246:60-66
[18] Zhu Q, Peng Y, Lin L, et al. Stable blue TiO2-nanoparticles for efficient visible light photocatalysts[J]. J Mater Chem A, 2014, 2(12):4429-4437
[19] Liu S, Zhang N, Tang Z, et al. Synthesis of one-dimensional CdS@TiO(2) core-shell nanocomposites photocatalyst for selective redox:The dual role of TiO(2) shell[J]. ACS Appl Mater Interfaces, 2012, 4(11):6378-6385
[20] Baker D R, Kamat P V. Photosensitization of TiO2 nanostructures with CdS quantum dots:Particulate versus tubular support architectures[J]. Adv Funct Mater, 2009, 19(5):805-811
[21] Li J, Cushing S K, Zheng P, et al. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer[J]. J Am Chem Soc, 2014, 136(23):8438-8449
[22] Daskalaki V M, Antoniadou M, Li P, et al. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater[J]. Environ Sci Technol, 2010, 44(19):7200-7205
[23] Qin N, Liu Y, Wu W, et al. One-Dimensional CdS/TiO2 nanofiber composites as efficient visible-light-driven photocatalysts for selective organic transformation:synthesis, characterization, and performance[J]. Langmuir, 2015, 31(3):1203-1209
[24] Chen X, Shen S, Guo L, et al. Semiconductor-Based photocatalytic hydrogen generation[J]. Chem Rev, 2010, 110(11):6503-6570
[25] Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis:Mechanisms and materials[J]. Chem Rev, 2014, 114(19):9919-9986
|