[an error occurred while processing this directive]
化学工业与工程
 首页 |  在线投稿 |  期刊介绍 |  编 委 会 |  投稿指南 |  期刊订阅 |  下载中心 |  出版伦理 |  联系我们 |  English
化学工业与工程 2023, Vol. 40 Issue (6) :37-44    DOI: 10.13353/j.issn.1004.9533.20230140
化学反应与工艺 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
GaN-ZnO/MCM-41的制备及其催化CO2氧化丙烷脱氢制丙烯反应
刘海卫1, 宋承轩1, 于芳1, 宋健1, 王志鹏1, 王立言1, 李裕1, 王鹏飞2, 崔剑3
1. 中北大学化学与化工学院, 太原 030051;
2. 中国科学院山西煤炭化学研究所, 太原 030051;
3. 北京北方节能环保有限公司, 北京 100070
Synthesis of GaN-ZnO/MCM-41 for catalyzing CO2-based oxidative dehydrogenation of propane to propene
LIU Haiwei1, SONG Chengxuan1, YU Fang1, SONG Jian1, WANG Zhipeng1, WANG Liyan1, LI Yu1, WANG Pengfei2, CUI Jian3
1. College of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China;
2. Institute of Coal Chemistry, Chinese Academy of Sciences; Taiyuan 030001, China;
3. China North Energy Conservation and Environment Protection Co., Ltd, Beijing 100070, China

摘要
参考文献
相关文章
Download: PDF (4248KB)   HTML ()   Export: BibTeX or EndNote (RIS)      Supporting Info
文章导读  
摘要 二氧化碳氧化丙烷脱氢制丙烯(CO2-OPDH)工艺是丙烯生产路线中较为理想的途径,而高性能催化剂的研制是该工艺取得突破的关键。以介孔分子筛MCM-41为载体,GaN-ZnO固溶体为活性组分,通过固相氮化法构筑具有双功能活性中心的GaN-ZnO/MCM-41催化剂,并对其催化CO2-OPDH反应性能进行了研究。结合X射线衍射光谱(XRD)、氮气吸脱附测试、场发射扫描电镜-能谱(SEM-EDX)、透射电子显微镜(TEM)、热重-质谱联用(TG-MS)以及拉曼光谱(Raman),对催化剂的物理化学性质进行了表征分析。研究表明,固相氮化法能够制备出固溶体催化剂,且该催化剂表现出有效的催化丙烷脱氢性能,优于相同反应条件下负载的单组分氮化镓或氧化锌催化剂。在600 ℃,CO2气氛下,Ga0.5-Zn0.5/MCM-41-800的丙烷转化率为21%,丙烯选择性高达92%。固溶体结构有利于活性组分的分散,能够产生更多的活性位点,而焙烧温度影响固溶体的组成结构,进而影响其催化活性。此外,CO2不仅能提高催化剂的活性,而且能够减少积炭的生成,改善催化剂的稳定性。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
刘海卫
宋承轩
于芳
宋健
王志鹏
王立言
李裕
王鹏飞
崔剑
关键词氮化镓   氧化锌   固溶体   丙烷脱氢   二氧化碳     
Abstract: The oxidative dehydrogenation of propane to propene in the presence of CO2 (CO2-OPDH) is considered as a desirable route for propene production, and the development of catalyst with high performance is the key to get a breakthrough in this process. Here, the GaN-ZnO/MCM-41 catalysts with dual-function active sites were constructed via a solid-state nitridation method with GaN-ZnO solid solution as the active component supporting on mesoporous MCM-41. Their catalytic performances for CO2-OPDH reaction were further evaluated. The physicochemical properties of obtained catalysts were characterized by a series of techniques such as X-ray diffraction spectroscopy (XRD), N2 adsorption-desorption measurements, field-emission scanning electron microscopy equipped with an energy dispersive X-ray instrument (SEM-EDX), transmission electron microscopy (TEM),thermogravimetric-mass spectra (TG-MS) and Raman spectra. It is found that the solid solution catalyst can be successfully prepared in a solid-state nitridation method, the propane dehydrogenation activity of which is superior to that of the supported single-component GaN or ZnO catalysts under the same testing conditions. Among them, the Ga0.5-Zn0.5/MCM-41 catalyst delivers a propane conversion of 22% with the selectivity of 92% towards propene at 600 ℃ in the CO2 atmosphere. This excellent catalytic performance could be attributed to the formation of solid solution structure, which was beneficial to the dispersion of active components and the generation of more active sites. The calcination temperature influenced the structure of solid solution and thus affected its catalytic activity. In addition, CO2 can not only increase the activity of the catalyst, but also improve its stability by declining the coke formation in PDH reaction.
Keywordsgallium nitride   zinc oxide   solid solution   propane dehydrogenation   CO2     
Received 2023-03-17;
Fund:国家自然科学基金资助项目(22002143);山西省自然科学基金资助项目(22202185)。
Corresponding Authors: 宋健,副教授,E-mail:songj@nuc.edu.cn;李裕,教授,E-mail:hgliyu@nuc.edu.cn。     Email: songj@nuc.edu.cn;hgliyu@nuc.edu.cn
About author: 刘海卫(1997-),男,硕士研究生,主要从事催化加氢研究。
引用本文:   
刘海卫, 宋承轩, 于芳, 宋健, 王志鹏, 王立言, 李裕, 王鹏飞, 崔剑.GaN-ZnO/MCM-41的制备及其催化CO2氧化丙烷脱氢制丙烯反应[J].  化学工业与工程, 2023,40(6): 37-44
LIU Haiwei, SONG Chengxuan, YU Fang, SONG Jian, WANG Zhipeng, WANG Liyan, LI Yu, WANG Pengfei, CUI Jian.Synthesis of GaN-ZnO/MCM-41 for catalyzing CO2-based oxidative dehydrogenation of propane to propene[J].  Chemcial Industry and Engineering, 2023,40(6): 37-44
Copyright 2010 by 化学工业与工程