[1] RUIZ-LÓPEZ E, GANDARA-LOE J, BAENA-MORENO F, et al. Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112329-112355 [2] 刘丹, 马哲, 刘梦晓, 等. CO2的电驱动还原[J]. 化学工业与工程, 2021, 38(5): 1-12 LIU Dan, MA Zhe, LIU Mengxiao, et al. Electricity-driven CO2 reduction[J]. Chemical Industry and Engineering, 2021, 38(5): 1-12(in Chinese) [3] ZHONG Y, WANG S, LI M, et al. Rational design of copper-based electrocatalysts and electrochemical systems for CO2 reduction: From active sites engineering to mass transfer dynamics[J]. Materials Today Physics, 2021, 18: 100354-100381 [4] YE W, GUO X, MA T. A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+products[J]. Chemical Engineering Journal, 2021, 414: 128825-128841 [5] MA W, XIE S, LIU T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C—C coupling over fluorine-modified copper[J]. Nature Catalysis, 2020, 3(6): 478-487 [6] ZHENG Y, VASILEFF A, ZHOU X L, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts[J]. Journal of the American Chemical Society, 2019, 141(19): 7646-7659 [7] XIAO C, ZHANG J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: A review[J]. ACS Nano, 2021, 15(5): 7975-8000 [8] WANG Y, ZHU Y, NIU C. Surface and length effects for aqueous electrochemical reduction of CO2 as studied over copper nanowire arrays[J]. Journal of Physics and Chemistry of Solids, 2020, 144: 109507-109513 [9] JUNG H, LEE S, LEE C, et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C—C coupling from CO2 reduction reaction[J]. Journal of the American Chemical Society, 2019, 141(11): 4624-4633 [10] CHEN Y, FAN Z, WANG J, et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: A crystal phase-dependent study[J]. Journal of the American Chemical Society, 2020, 142(29): 12760-12766 [11] FAN M, GARBARINO S, TAVARES A C, et al. Progress in the electrochemical reduction of CO2 on hierarchical dendritic metal electrodes[J]. Current Opinion in Electrochemistry, 2020, 23: 145-153 [12] CHOU T, CHANG C, YU H, et al. Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene[J]. Journal of the American Chemical Society, 2020, 142(6): 2857-2867 [13] DUTTA A, RAHAMAN M, LUEDI N C, et al. Morphology matters: Tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts[J]. ACS Catalysis, 2016, 6(6): 3804-3814 [14] RASHID N, BHAT M A, INGOLE P P. Dendritic copper microstructured electrodeposits for efficient and selective electrochemical reduction of carbon dioxide into C1 and C2 hydrocarbons[J]. Journal of CO2 Utilization, 2020, 38: 385-397 [15] LV J, JOUNY M, LUC W, et al. A highly porous copper electrocatalyst for carbon dioxide reduction[J]. Advanced Materials, 2018, 30(49): 1803111-1803119 [16] YANG K, KO W R, LEE J H, et al. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode[J]. Angewandte Chemie (International Ed in English), 2017, 56(3): 796-800 [17] ZHUANG T, PANG Y, LIANG Z, et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide[J]. Nature Catalysis, 2018, 1(12): 946-951 [18] YU Z, WU S, CHEN L, et al. Promoting the electrocatalytic reduction of CO2 on ultrathin porous bismuth nanosheets with tunable surface-active sites and local pH environments[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10648-10655 [19] GIRI S D, MAHAJANI S M, SURESH A K, et al. Electrochemical reduction of CO2 on activated copper: Influence of surface area[J]. Materials Research Bulletin, 2020, 123: 110702-110710 [20] CAO X, CAO G, LI M, et al. Enhanced ethylene formation from carbon dioxide reduction through sequential catalysis on Au decorated cubic Cu2O electrocatalyst[J]. European Journal of Inorganic Chemistry, 2021, 2021(24): 2353-2364 [21] TSAI Y H, CHIU C Y, HUANG M. Fabrication of diverse Cu2O nanoframes through face-selective etching[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24611-24617 [22] LI Q, LI M, ZHANG S, et al. Tuning Sn-Cu catalysis for electrochemical reduction of CO2 on partially reduced oxides SnOx-CuOx-modified Cu electrodes[J]. Catalysts, 2019, 9(5): 476-489 [23] LI Z, YADAV R M, SUN L, et al. CuO/ZnO/C electrocatalysts for CO2-to-C2+ products conversion with high yield: On the effect of geometric structure and composition[J]. Applied Catalysis A: General, 2020, 606: 117829-117836 [24] WU M, ZHU C, WANG K, et al. Promotion of CO2 electrochemical reduction via Cu nanodendrites[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11562-11569 [25] ALTAF N, LIANG S Y, HUANG L, et al. Electro-derived Cu-Cu2O nanocluster from LDH for stable and selective C2 hydrocarbons production from CO2 electrochemical reduction[J]. Journal of Energy Chemistry, 2020, 48: 169-180 [26] BO J, LI M, ZHU X, et al. Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios[J]. Frontiers of Chemical Science and Engineering, 2022, 16(4): 498-510 [27] ZHANG J, LUO W, ZVTTEL A. Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane[J]. Journal of Catalysis, 2020, 385: 140-145 [28] RABIEE H, GE L, ZHANG X, et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: A review[J]. Energy & Environmental Science, 2021, 14(4): 1959-2008 [29] TOMBOC G M, CHOI S, KWON T, et al. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(17): 190398-190422 [30] NITOPI S, BERTHEUSSEN E, SCOTT S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews, 2019, 119(12): 7610-7672 [31] WANG M, ZHANG S, LI M, et al. Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2[J]. Frontiers of Chemical Science and Engineering, 2020, 14(5): 813-823 [32] GUO W, SHIM K, ODONGO NGOME F O, et al. Highly active coral-like porous silver for electrochemical reduction of CO2 to CO[J]. Journal of CO2 Utilization, 2020, 41: 101242-101250 [33] 韩真真, 王华, 王静, 等. 多孔锡电极的制备及其用于CO2电化学还原性能[J]. 化学工业与工程, 2016, 33(5): 8-13 HAN Zhenzhen, WANG Hua, WANG Jing, et al. Fabrication of porous tin and its application to electroreduction of CO2[J]. Chemical Industry and Engineering, 2016, 33(5): 8-13(in Chinese) [34] JIANG K, HUANG Y, ZENG G, et al. Effects of surface roughness on the electrochemical reduction of CO2 over Cu[J]. ACS Energy Letters, 2020, 5(4): 1206-1214 [35] LIU B, CAI C, YANG B, et al. Intermediate enrichment effect of porous Cu catalyst for CO2 electroreduction to C2 fuels[J]. Electrochimica Acta, 2021, 388: 138552-138559 [36] YANG P, ZHANG X, GAO F, et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels[J]. Journal of the American Chemical Society, 2020, 142(13): 6400-6408 [37] LYU Z, ZHU S, XIE M, et al. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction[J]. Angewandte Chemie (International Ed in English), 2021, 60(4): 1909-1915 [38] WEEKES D M, SALVATORE D A, REYES A, et al. Electrolytic CO2 Reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4): 910-918
|