[1] BURTON N A, PADILLA R V, ROSE A, et al. Increasing the efficiency of hydrogen production from solar powered water electrolysis[J]. Renewable and Sustainable Energy Reviews, 2021, doi:10.1016/j.rser.2020.110255
[2] CHEN Z, YUN S, WU L, et al. Waste-derived catalysts for water electrolysis: Circular economy-driven sustainable green hydrogen energy[J]. Nano-Micro Letters, 2022, doi:10.1007/s40820-022-00974-7
[3] DUNN S. Hydrogen futures: Toward a sustainable energy system[J]. International Journal of Hydrogen Energy, 2002, 27(3): 235-264
[4] HUANG J H, XIE Y, YAN L, et al. Decoupled amphoteric water electrolysis and its integration with Mn-Zn battery for flexible utilization of renewables[J]. Energy & Environmental Science, 2021, 14(2): 883-889
[5] KHATIB F N, WILBERFORCE T, IJAODOLA O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 1-14
[6] 廖龙飞, 李明雨, 尹永利, 等. 碱性水电解制氢催化剂研究进展[J]. 工业催化. 2023, 31(2): 7-17 LIAO Longfei, LI Mingyu, YIN Yongli, et al. Research progress on catalysts of alkaline water electrolysis for hydrogen production[J]. Industrial Catalysis, 2023, 31(2): 7-17
[7] 林逍. 钴基电解水析氧催化剂的制备、表征及性能研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2019 LIN Xiao. Preparation, characterization and properties of cobalt-based catalysts for hydrogen production from electrolytic water[D].Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 (in Chinese)
[8] LI C, ZHAO J, XIE L, et al. Surface-adsorbed carboxylate ligands on layered double hydroxides/metal-organic frameworks promote the electrocatalytic oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2021, 60(33): 18129-18137
[9] GONG M, DAI H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Research, 2015, 8(1): 23-39
[10] CHEN G, MA T, LIU Z, et al. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M=P, S) for overall water splitting[J]. Advanced Functional Materials, 2016, 26(19): 3314-3323
[11] QIAN Q, LI Y, LIU Y, et al. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis[J]. Advanced Materials, 2019, doi:10.1002/adma.201901139
[12] MCCRORY C C L, JUNG S, PETERS J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(45): 16977-16987
[13] FU S, SONG J, ZHU C, et al. Ultrafine and highly disordered Ni2Fe1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte[J]. Nano Energy, 2018, 44: 319-326
[14] LI J, CHU D, DONG H, et al. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides[J]. Journal of the American Chemical Society, 2020, 142(1): 50-54
[15] GONG M, LI Y, WANG H, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23): 8452-8455
[16] ZHOU Q, CHEN Y, ZHAO G, et al. Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction[J]. ACS Catalysis, 2018, 8(6): 5382-5390
[17] LI H, ZHANG L, WANG S, et al. Accelerated oxygen evolution kinetics on NiFeAl-layered double hydroxide electrocatalysts with defect sites prepared by electrodeposition[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28556-28565
[18] LU Z, XU W, ZHU W, et al. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction[J]. Chemical Communications, 2014, 50(49): 6479-6482
[19] CHEN J, REN J, SHALOM M, et al. Stainless steel mesh-supported NiS nanosheet array as highly efficient catalyst for oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5509-5516
[20] WANG L, GU C, GE X, et al. Anchoring Ni2P sheets on NiCo2O4 nanocone arrays as optimized bifunctional electrocatalyst for water splitting[J]. Advanced Materials Interfaces, 2017, doi: 10.1002/admi.201700481
[21] KANG Q, LAI D, TANG W, et al. Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction[J]. Chemical Science, 2021, 12(11): 3818-3835
[22] ZHAO J, ZHANG J, LI Z, et al. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction[J]. Small, 2020, doi: 10.1002/smll.202003916
[23] 葛升, 闵洛夫, 费洪达, 等. 一步电沉积制备高活性高稳定镍铁合金析氧电催化剂[J]. 化学工业与工程, 2022, 39(2): 41-49 GE Sheng, MIN Luofu, FEI Hongda, et al. Highly efficient and durable Ni-Fe alloy catalyst towards OER via one-step electrodeposition[J]. Chemical Industry and Engineering, 2022, 39(2): 41-49(in Chinese)
[24] LI D, KOIKE M, WANG L, et al. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar[J]. ChemSusChem, 2014, 7(2): 510-522
[25] FAN K, CHEN H, JI Y, et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation[J]. Nature Communications, 2016, doi: 10.1038/ncomms11981
[26] LIM D, OH E, LIM C, et al. Bimetallic NiFe alloys as highly efficient electrocatalysts for the oxygen evolution reaction[J]. Catalysis Today, 2020, 352: 27-33
[27] ZHANG X, XU H, LI X, et al. Facile synthesis of nickel-iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting[J]. ACS Catalysis, 2016, 6(2): 580-588
[28] BI S, GENG Z, WANG Y, et al. Multi-stage porous nickel-iron oxide electrode for high current alkaline water electrolysis[J]. Advanced Functional Materials, 2023, doi: 10.1002/adfm.202214792
[29] SIVANANTHAM A, SHANMUGAM S. Graphitic carbon-NiCo nanostructures as efficient non-precious-metal electrocatalysts for the oxygen reduction reaction[J]. ChemElectroChem, 2018, 5(14): 1937-1943
[30] GE Z, WANG F, GUO J, et al. Low-cost and multi-level structured NiFeMn alloy@NiFeMn oxyhydroxide electrocatalysts for highly efficient overall water splitting[J]. Inorganic Chemistry Frontiers, 2021, 8(11): 2713-2724
[31] ZHOU T, LIU Z, YANG B, et al. Dealloying fabrication of hierarchical porous nickel-iron foams for efficient oxygen evolution reaction[J]. Frontiers in Chemistry, 2022, doi: 10.3389/fchem.2022.1047398
[32] SONG S, FU Y, YIN F, et al. NiFe-based tungstate@layered double hydroxide heterostructure supported on graphene as efficient oxygen evolution reaction catalyst[J]. Materials Today Chemistry, 2023, doi: 10.1016/j.mtchem.2022.101369
[33] LIM D, KONG H, KIM N, et al. Oxygen-deficient NiFe2O4 spinel nanoparticles as an enhanced electrocatalyst for the oxygen evolution reaction[J]. ChemNanoMat, 2019, 5(10): 1296-1302
[34] WU L, NING M, XING X, et al. Boosting oxygen evolution reaction of (Fe, Ni)OOH via defect engineering for anion exchange membrane water electrolysis under industrial conditions[J]. Advanced Materials, 2023, doi: 10.1002/adma.202306097
[35] LIU P, CHEN B, LIANG C, et al. Tip-enhanced electric field: A new mechanism promoting mass transfer in oxygen evolution reactions[J]. Advanced Materials, 2021, doi:10.1002/adma.202007377
[36] YAN G, LI G, TAN H, et al. Spinel-type ternary multimetal hybrid oxides with porous hierarchical structure grown on Ni foam as large-current-density water oxidation electrocatalyst[J]. Journal of Alloys and Compounds, 2020, doi: 10.1016/j.jallcom.2020.155662
[37] JIA X, ZHAO Y, CHEN G, et al. Water splitting: Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst[J]. Advanced Energy Materials, 2016, doi:10.1002/aenm.201502585
[38] LIU G, YAO R, ZHAO Y, et al. Encapsulation of Ni/Fe3O4 heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation[J]. Nanoscale, 2018, 10(8): 3997-4003
[39] GAO M, SHENG W, ZHUANG Z, et al. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst[J]. Journal of the American Chemical Society, 2014, 136(19): 7077-7084
[40] SHI R, WANG J, WANG Z, et al. Unique NiFe NiCoO2 hollow polyhedron as bifunctional electrocatalysts for water splitting[J]. Journal of Energy Chemistry, 2019, 33: 74-80
[41] ZHU K, LI M, LI X, et al. Enhancement of oxygen evolution performance through synergetic action between NiFe metal core and NiFeOx shell[J]. Chemical Communications, 2016, 52(79): 11803-11806
|