[1] 中华人民共和国国务院新闻办公室. 新时代的中国能源发展: (2020年12月)[N]. 人民日报, 2020-12-22(10)
[2] XI Jinping. Statement at the general debate of the 75th session of the united nations general assembly[J]. Gazette of the State Council of the People's Republic of China, 2020(28): 5-7(in Chinese) 习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 中华人民共和国国务院公报, 2020(28): 5-7
[3] ZHANG G, LAN Z, WANG X. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2016, 55(51): 15712-15727
[4] YOUNG J, STEINER M A, DÖSCHER H, et al. Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures[J]. Nature Energy, 2017, doi: 10.1038/nenergy.2017.28
[5] FAN L, LI F, RAMKUMAR S. Utilization of chemical looping strategy in coal gasification processes[J]. Particuology, 2008, 6(3): 131-142
[6] CHI J, YU H. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394
[7] BARBER J. Photosynthetic energy conversion: Natural and artificial[J]. Chemical Society Reviews, 2009, 38(1): 185-196
[8] LEWIS N S. Toward cost-effective solar energy use[J]. Science, 2007, 315(5813): 798-801
[9] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38
[10] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96
[11] RAN J, ZHANG J, YU J, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chemical Society Reviews, 2014, 43(22): 7787-7812
[12] YUAN Y, CHEN D, YU Z, et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2018, 6(25): 11606-11630
[13] WAGNER F T, SOMORJAI G A. Photocatalytic hydrogen production from water on Pt-free SrTiO3 in alkali hydroxide solutions[J]. Nature, 1980, 285(5766): 559-560
[14] KUDO A, HIJⅡ S. H2 or O2 Evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+with 6s2 configuration and d0 transition metal ions[J]. Chemistry Letters, 1999, 28(10): 1103-1104
[15] SHI J, SUN D, ZOU Y, et al. Trap-level-tunable Se doped CdS quantum dots with excellent hydrogen evolution performance without co-catalyst[J]. Chemical Engineering Journal, 2019, 364: 11-19
[16] SHANG L, ZHOU C, BIAN T, et al. Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production[J]. Journal of Materials Chemistry A, 2013, doi: 10.1039/C3TA01685D
[17] ZHANG L, LIU Q, CHAI Y, et al. Facile construction of phosphate incorporated graphitic carbon nitride with mesoporous structure and superior performance for H2 production[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5591-5602
[18] JAMES S L. Metal-organic frameworks[J]. Chemical Society Reviews, 2003, doi: 10.1039/B200393G
[19] WANG Z, LI C, DOMEN K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting[J]. Chemical Society Reviews, 2019, 48(7): 2109-2125
[20] TOJO F, ISHIZAKI M, KUBOTA S, et al. Histidine decorated nanoparticles of CdS for highly efficient H2 production via water splitting[J]. Energies, 2020, doi: 10.3390/en13143738
[21] FENG X, DING X, JIANG D. Covalent organic frameworks[J]. Chemical Society Reviews, 2012, doi: 10.1039/c2cs35157a
[22] YAO J, WANG H. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications[J]. Chemical Society Reviews, 2014, 43(13): 4470-4493
[23] MAO S, ZOU Y, SUN G, et al. Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production[J]. Journal of Colloid and Interface Science, 2021, 581: 1-10
[24] CHEN Y, TAN L, LIU J, et al. Calix[4]arene based dye-sensitized Pt@UiO-66-NH2 metal-organic framework for efficient visible-light photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2017, 206: 426-433
[25] LV Z, LI W, CHENG X, et al. Constructing internal electric field in CdS via Bi, Ni co-doping strategy for enhanced visible-light H2 production[J]. Applied Surface Science, 2021, doi: 10.1016/j.apsusc.2021.149758
[26] TIAN H, LIU X, LIANG Z, et al. Gold nanorods/g-C3N4 heterostructures for plasmon-enhanced photocatalytic H2 evolution in visible and near-infrared light[J]. Journal of Colloid and Interface Science, 2019, 557: 700-708
[27] WANG Z, ZHANG Y, NEYTS E C, et al. Catalyst preparation with plasmas: How does it work?[J]. ACS Catalysis, 2018, 8(3): 2093-2110
[28] LO S S, MIRKOVIC T, CHUANG C H, et al. Emergent properties resulting from type-Ⅱ band alignment in semiconductor nanoheterostructures[J]. Advanced Materials, 2011, 23(2): 180-197
[29] ZHOU P, YU J, JARONIEC M. All-solid-state Z-scheme photocatalytic systems[J]. Advanced Materials, 2014, 26(29): 4920-4935
[30] SUBUDHI S, PARAMANIK L, SULTANA S, et al. A type-Ⅱ interband alignment heterojunction architecture of cobalt titanate integrated UiO-66-NH2: A visible light mediated photocatalytic approach directed towards Norfloxacin degradation and green energy (Hydrogen) evolution[J]. Journal of Colloid and Interface Science, 2020, 568: 89-105
[31] LUO J, WANG Z, JIANG H, et al. Localized building titania-graphene charge transfer interfaces for enhanced photocatalytic performance[J]. Langmuir, 2020, 36(17): 4637-4644
[32] WANG Y, SUZUKI H, XIE J, et al. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems[J]. Chemical Reviews, 2018, 118(10): 5201-5241
[33] LIU F, SHI R, WANG Z, et al. Direct Z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting[J]. Angewandte Chemie, 2019, 131(34): 11917-11921
[34] HARA M, NUNOSHIGE J, TAKATA T, et al. Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation[J]. Chemical Communications (Cambridge, England), 2003(24): 3000-3001
[35] MAO S, SHI J, SUN G, et al. Au nanodots@thiol-UiO66@ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: The effect of different Au positions on the transfer of electron-hole pairs[J]. Applied Catalysis B: Environmental, 2021, 282: doi: 10.1016/j.apcatb.2020.119550
[36] NARENDRANATH S B, THEKKEPARAMBIL S V, GEORGE L, et al. Photocatalytic H2 evolution from water-methanol mixtures on InGaO3(ZnO)m with an anisotropic layered structure modified with CuO and NiO cocatalysts[J]. Journal of Molecular Catalysis A: Chemical, 2016, 415: 82-88
[37] WEI Y, CHENG G, XIONG J, et al. Synergistic impact of cocatalysts and hole scavenger for promoted photocatalytic H2 evolution in mesoporous TiO2NiSx hybrid[J]. Journal of Energy Chemistry, 2019, 32: 45-56
[38] WANG Y, YU Y, LI R, et al. Hydrogen production with ultrahigh efficiency under visible light by graphene well-wrapped UiO-66-NH2 octahedrons[J]. J Mater Chem A, 2017, 5(38): 20136-20140
[39] SHIMA S, ERMLER U. Structure and function of[Fe]-hydrogenase and its iron-guanylylpyridinol (FeGP) cofactor[J]. European Journal of Inorganic Chemistry, 2011, 2011(7): 963-972
[40] HOLÁ K, PAVLIUK M V, NÉMETH B, et al. Carbon dots and[FeFe]hydrogenase biohybrid assemblies for efficient light-driven hydrogen evolution[J]. ACS Catalysis, 2020, 10(17): 9943-9952
[41] CASTNER A T, JOHNSON B A, COHEN S M, et al. Mimicking the electron transport chain and active site of[FeFe]hydrogenases in one metal-organic framework: Factors that influence charge transport[J]. Journal of the American Chemical Society, 2021, 143(21): 7991-7999
[42] BRAZZOLOTTO D, GENNARI M, QUEYRIAUX N, et al. Nickel-centred proton reduction catalysis in a model of[NiFe]hydrogenase[J]. Nature Chemistry, 2016, 8(11): 1054-1060
[43] PAN H, HUANG G, WODRICH M D, et al. A catalytically active[Mn]-hydrogenase incorporating a non-native metal cofactor[J]. Nature Chemistry, 2019, 11(7): 669-675
[44] LI X, WANG W, DONG F, et al. Recent advances in noncontact external-field-assisted photocatalysis: From fundamentals to applications[J]. ACS Catalysis, 2021, 11(8): 4739-4769
[45] ZHAN X, WANG Z, WANG F, et al. Efficient CoO nanowire array photocatalysts for H2 generation[J]. Applied Physics Letters, 2014, doi: 10.1063/1.4898681
[46] GUO S, LI X, LI J, et al. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems[J]. Nature Communications, 2021, doi: 10.1038/s41467-021-21526-4
[47] YIN H, LI D, WANG X, et al. Surface passivation effect of ferrihydrite with hole-storage ability in water oxidation on BiVO4 photoanode[J]. The Journal of Physical Chemistry C, 2021, 125(15): 8369-8375
[48] FANG G, LIU Z, HAN C, et al. Promising CoFe-NiOOH ternary polymetallic cocatalyst for BiVO4-based photoanodes in photoelectrochemical water splitting[J]. ACS Applied Energy Materials, 2021, 4(4): 3842-3850
[49] QI J, ZHANG W, CAO R. A new strategy for solar-to-hydrogen energy conversion: Photothermal-promoted electrocatalytic water splitting[J]. ChemElectroChem, 2019, 6(10): 2762-2765
[50] KIM J H, HANSORA D, SHARMA P, et al. Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge[J]. Chemical Society Reviews, 2019, 48(7): 1908-1971
[51] SIVULA K, van de KROL R. Erratum: Semiconducting materials for photoelectrochemical energy conversion[J]. Nature Reviews Materials, 2016, doi: 10.1038/natrevmats.2016.10
[52] LI Y, HUANG J, PENG T, et al. Photothermocatalytic synergetic effect leads to high efficient detoxification of benzene on TiO2 and Pt/TiO2 nanocomposite[J]. ChemCatChem, 2010, 2(9): 1082-1087
[53] FANG S, LI Y, YANG Y, et al. Mg-doped OMS-2 nanorods: A highly efficient catalyst for purification of volatile organic compounds with full solar spectrum irradiation[J]. Environmental Science: Nano, 2017, 4(9): 1798-1807
[54] GU L, ZHANG C, GUO Y, et al. Enhancing electrocatalytic water splitting activities via photothermal effect over bifunctional nickel/reduced graphene oxide nanosheets[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3710-3714
[55] FANG Y, LV Y, GONG F, et al. Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres[J]. Journal of the American Chemical Society, 2015, 137(8): 2808-2811
|