[an error occurred while processing this directive]
化学工业与工程
 首页 |  在线投稿 |  期刊介绍 |  编 委 会 |  投稿指南 |  期刊订阅 |  下载中心 |  出版伦理 |  联系我们 |  English
化学工业与工程 2022, Vol. 39 Issue (1) :1-10    DOI: 10.13353/j.issn.1004.9533.20210377
化学反应与工艺 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
太阳能光解水制氢的核心催化剂及多场耦合研究进展
张浩杰1,2, 张雯1, 姜丰1, 屈治国2
1. 西安交通大学化学学院,西安 710049;
2. 西安交通大学能源动力与工程学院,西安 710049
Progress of the key catalyst for solar photolysis of water to produce hydrogen and research on multi-field coupling
ZHANG Haojie1,2, ZHANG Wen1, JIANG Feng1, QU Zhiguo2
1. School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China;
2. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

摘要
参考文献
相关文章
Download: PDF (2593KB)   HTML ()   Export: BibTeX or EndNote (RIS)      Supporting Info
文章导读  
摘要 太阳能光解水制氢可从根本上解决能源需求及碳排放造成的环境污染问题,是各国关注的热点之一。利用太阳能全光谱光催化制氢是目前研究的主要方式,但存在催化效率较低,难以实际应用的问题。造成光催化剂催化效率低的主要因素在于比表面积小、光吸收能力弱、禁带宽度较宽、载流子迁移能力弱。对光催化机理和催化剂的优化策略进行了总结,通过敏化材料掺杂、元素掺杂、异质结构建、助催化剂负载、高导电性石墨烯掺杂等策略来有效提高光催化剂对可见光的吸收、降低光生载流子的复合、增加活性位点、加速表面反应。此外,对光电、光热及光热电催化等近年发展起来的多场耦合催化制氢做了系统的介绍,对太阳能制氢催化剂理论和实践的未来发展做出了展望。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
张浩杰
张雯
姜丰
屈治国
关键词太阳能;   光解水制氢;   催化剂;   多场耦合     
Abstract: Solar photolysis of water to produce hydrogen can fundamentally solve the problems of energy demand and environmental pollution caused by carbon emissions, which is one of the hot topics in the world. The use of solar full-spectrum photocatalysis for hydrogen production is the main research method currently, but the catalytic efficiency is low and it is difficult to be applied in practice. The main factors leading to the low photocatalytic efficiency are small specific surface area, weak light absorption capacity, wide band gap width and weak carrier mobility. In this paper, the mechanism of photocatalysis and the optimization strategy of photocatalyst are summarized. Through the strategies such as sensitization material doping, element doping, hetero-structure construction, co-catalyst loading, high-conductivity graphene doping, etc., the visible light absorption of photocatalyst is improved effectively, the recombinations of photo-generated carriers are reduced, active sites are increased and surface reactions are accelerated. In addition, the multi-field coupling catalytic hydrogen production developed in recent years, such as photoelectric, photothermal and photothermalelectric catalysis, has been systematically introduced, and the future development of the theory and practice of solar hydrogen production catalysts have been prospected.
Keywordssolar energy;   hydrogen evolution;   catalyst;   multi-field coupling     
Received 2021-06-07;
Fund:陕西省自然科学基金(2020JM-027)
Corresponding Authors: 张雯,教授,E-mail:zhangwen@xjtu.edu.cn;屈治国,教授,E-mail:zgqu@xjtu.edu.cn     Email: zhangwen@xjtu.edu.cn;zgqu@xjtu.edu.cn
引用本文:   
张浩杰, 张雯, 姜丰, 屈治国.太阳能光解水制氢的核心催化剂及多场耦合研究进展[J].  化学工业与工程, 2022,39(1): 1-10
ZHANG Haojie, ZHANG Wen, JIANG Feng, QU Zhiguo.Progress of the key catalyst for solar photolysis of water to produce hydrogen and research on multi-field coupling[J].  Chemcial Industry and Engineering, 2022,39(1): 1-10
Copyright 2010 by 化学工业与工程