[1] CHENG Y, ZHAO S, JOHANNESSEN B, et al. Single-atom catalysts: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction (adv. mater. 13/2018)[J]. Advanced Materials, 2018, doi: 10.1002/adma.201706287 [2] DURST J, RUDNEV A, DUTTA A, et al. Electrochemical CO2 reduction-A critical view on fundamentals, materials and applications[J]. CHIMIA, 2015, 69(12): 769-776 [3] 李建波, 吴晓丹, 吕杰, 等. 二氧化碳缓蚀剂研究进展[J]. 应用化工, 2022, 51(2):509-513 LI Jianbo, WU Xiaodan, LV Jie, et al. Research progress of carbon dioxide corrosion inhibitor[J]. Applied Chemical Industry, 2022, 51(2): 509-513(in Chinese) [4] GHADGE S. Highly efficient and robust one dimensional (1D) transition metal oxide based nanostructured electrocatalyst architectures for acid mediated oxygen evolution reaction (OER)[C]//ECS Meeting Abstracts. IOP Publishing. 2018 02(46): 1628-1628 [5] LIU X, LI B, NI B, et al. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts[J]. Journal of Energy Chemistry, 2022, 64: 263-275 [6] RACITI D, WANG C. Interplay of mass transfer and local pH effects in CO2 reduction electrocatalysis[J]. ECS Meeting Abstracts, 2017, (45): 1996 [7] WANG F, ZHANG W, WAN H, et al. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction[J]. Chinese Chemical Letters, 2022, 33(5): 2259-2269 [8] TODOROVA T K, SCHREIBER M W, FONTECAVE M. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts[J]. ACS Catalysis, 2020, 10(3): 1754-1768 [9] ZHANG H, LI J, CHENG M, et al. CO electroreduction: Current development and understanding of Cu-based catalysts[J]. ACS Catalysis, 2019, 9(1): 49-65 [10] TOMBOC G M, CHOI S, KWON T, et al. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs[J]. Advanced Materials, 2020, doi: 10.1002/adma.201908398 [11] RACITI D, WANG C. Interplay of mass transfer and local pH effects in CO2 reduction electrocatalysis[J]. ECS Meeting Abstracts, 2017, (45): 1996 [12] CALLE-VALLEJO F, KOPER M T M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes[J]. Angewandte Chemie (International Ed in English), 2013, 52(28): 7282-7285 [13] ZHENG Y, VASILEFF A, ZHOU X, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts[J]. Journal of the American Chemical Society, 2019, 141(19): 7646-7659 [14] BIRDJA Y Y, PREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745 [15] KOU Z, LI X, WANG T, et al. Fundamentals, on-going advances and challenges of electrochemical carbon dioxide reduction[J]. Electrochemical Energy Reviews, 2022, 5(1): 82-111 [16] ZHAO K, NIE X, WANG H, et al. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon[J]. Nature Communications, 2020, 11: 2455 [17] LONG C, LI X, GUO J, et al. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: Recent progress and perspectives[J]. Small Methods, 2019, doi:10.1002/smtd.201800369 [18] LI X, WU X, LV X, et al. Recent advances in metal-based electrocatalysts with hetero-interfaces for CO2 reduction reaction[J]. Chem Catalysis, 2022, 2(2): 262-291 [19] PARAKNOWITSCH J P, THOMAS A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science, 2013, 6(10): 2839-2855 [20] ZHANG Y, LIU T, WANG X, et al. Dual-atom metal and nonmetal site catalyst on a single nickel atom supported on a hybridized BCN nanosheet for electrochemical CO2 reduction to methane: Combining high activity and selectivity[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 9073-9083 [21] BENDERSKII V, KRIVENKO A. Mechanism of the reaction of electrochemical reduction of carbon dioxide to methane[J]. Dokl Phys Chem(Engl Transl); (United States), 1987, 291(5), 1395-1399 [22] LIU S, YANG H, SU X, et al. Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review[J]. Journal of Energy Chemistry, 2019, 36: 95-105 [23] HE C, HUANG W, XU L, et al. Tuning near-gap electronic structure, interface charge transfer and visible light response of hybrid doped graphene and Ag3PO4 composite: Dopant effects[J]. Scientific Reports, 2016, 6(1): 1-12 [24] PAN X, BAO X. The effects of confinement inside carbon nanotubes on catalysis[J]. Accounts of Chemical Research, 2011, 44(8): 553-562 [25] CHEN W, FAN Z, PAN X, et al. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. Journal of the American Chemical Society, 2008, 130(29): 9414-9419 [26] WU J, LIU M, SHARMA P, et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam[J]. Nano Letters, 2016, 16(1): 466-470 [27] YOU B, KANG F, YIN P, et al. Hydrogel-derived heteroatom-doped porous carbon networks for supercapacitor and electrocatalytic oxygen reduction[J]. Carbon, 2016, 103: 9-15 [28] YANG H, LIN Q, ZHANG C, et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities[J]. Nature Communications, 2020, 11(1): 1-8 [29] TUCI G, FILIPPI J, BA H, et al. How to teach an old dog new (electrochemical) tricks: Aziridine-functionalized CNTs as efficient electrocatalysts for the selective CO2 reduction to CO[J]. Journal of Materials Chemistry A, 2018, 6(34): 16382-16389 [30] SONG Y, CHEN W, ZHAO C, et al. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol[J]. Angewandte Chemie International Edition, 2017, 56(36): 10840-10844 [31] JIA C, DASTAFKAN K, REN W, et al. Carbon-based catalysts for electrochemical CO2 reduction[J]. Sustainable Energy & Fuels, 2019, 3(11): 2890-2906 [32] LI W, SEREDYCH M, RODRÍGUEZ-CASTELLÓN E, et al. Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2 to CO and CH4[J]. ChemSusChem, 2016, 9(6): 606-616 [33] SHEN H, SUN Q. Cu atomic chain supported on graphene nanoribbon for effective conversion of CO2 to ethanol[J]. ChemPhysChem, 2020, 21(16): 1768-1774 [34] ZONG X, JIN Y, LIU C, et al. Electrospun nanofibers for electrochemical reduction of CO2: A mini review[J]. Electrochemistry Communications, 2021, 124: 106968 [35] LIU S, LU X, XIAO J, et al. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH[J]. Angewandte Chemie, 2019, 131(39): 13966-13971 [36] JIANG K, SIAHROSTAMI S, AKEY A J, et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis[J]. Chem, 2017, 3(6): 950-960 [37] ZHANG W, ZENG J, LIU H, et al. CoxNi1-x nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction[J]. Journal of Catalysis, 2019, 372: 277-286 [38] HORI Y. Electrochemical CO2 reduction on metal electrodes[J]. Modern aspects of electrochemistry, 2008, 42(MAOE): 89-189 [39] CHENG Y, YANG S, JIANG S, et al. Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide[J]. Small Methods, 2019, doi: 10.1002/smtd.201800440 [40] YANG H, LIN Q, WU Y, et al. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density[J]. Nano Energy, 2020, 70: 104454 [41] ZHAO Y, LIANG J, WANG C, et al. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide[J]. Advanced Energy Materials, 2018, 8(10): 1702524 [42] 林清. 柔性自支撑碳纤维电极的制备及电催化还原二氧化碳性能研究[D]. 广东深圳: 深圳大学, 2020 LIN Qing. Preparation of flexible self-supported carbon fiber electrode and its performance in electrocatalytic reduction of carbon dioxide[D]. Guangdong Shenzhen, Shenzhen University, 2020(in Chinese) [43] FAN L, XIA Z, XU M, et al. 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products[J]. Advanced Functional Materials, 2018, doi: 10.1002/adfm.201706289 [44] HU H, GUI L, ZHOU W, et al. Partially reduced Sn/SnO2 porous hollow fiber: A highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction[J]. Electrochimica Acta, 2018, 285: 70-77 [45] SUTHERLAND B R. Breaking compromises in CO2 reduction[J]. Joule, 2017, 1(4): 643-645 [46] PUPPIN L G, KHALID M, DA SILVA G T T, et al. Electrochemical reduction of CO2 to formic acid on Bi2O2CO3/carbon fiber electrodes[J]. Journal of Materials Research, 2020, 35(3): 272-280 [47] LV W, BEI J, ZHANG R, et al. Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential[J]. ACS Omega, 2017, 2(6): 2561-2567 [48] RESASCO J, LUM Y, CLARK E, et al. Effects of anion identity and concentration on electrochemical reduction of CO2[J]. ChemElectroChem, 2018, 5(7): 1064-1072 [49] SALAZAR-VILLALPANDO M D. Effect of electrolyte on the electrochemical reduction of CO2[J]. ECS Transactions, 2011, 33(27): 77-88 [50] GONG Q, DING P, XU M, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2019, 10(1): 1-10 [51] PANDER J E III, BARUCH M F, BOCARSLY A B. Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry[J]. ACS Catalysis, 2016, 6(11): 7824-7833 [52] DAVID R, CHAO W. Recent advances in CO2 reduction electrocatalysis on copper[J]. ACS Energy Letters, 2018, 3(7): 1545-1556 [53] DU J, LI S, LIU S, et al. Selective electrochemical reduction of carbon dioxide to ethanol via a relay catalytic platform[J]. Chemical Science, 2020, 11(19): 5098-5104 [54] SHAN C, MARTIN E, PETERS D, et al. Site-selective growth of AgPd nanodendrite-modified Au nanoprisms: High electrocatalytic performance for CO2 reduction[J]. Chemistry of Materials, 2017, 29(14): 6030-6043
|