[1] LEVENE P A, WALTI A. On condensation products of propylene oxide and of glycidol[J]. Journal of Biological Chemistry, 1927, 75(1): 325-336 [2] FIUME M M, BERGFELD W F, BELSITO D V, et al. Safety assessment of propylene glycol, tripropylene glycol, and PPGs as used in cosmetics[J]. International Journal of Toxicology, 2012, 31(5 Suppl): 245S-260S [3] BENHAM A L, KURATA F. Kinetics of the catalyzed and uncatalyzed liquid-phase hydration of propylene oxide[J]. AIChE Journal, 1955, 1(1): 118-124 [4] MASUDA T, ASANO K, HORI N, et al. Method for preparing ethylene glycol and/or propylene glycol: US 4937393A[P]. 1990-06-26 [5] KOZLOVSKY I A, KOZLOVSKY R A, KOUSTOV A V, et al. Kinetics and products distribution of selective catalytic hydration of ethylene- and propylene oxides in concentrated aqueous solutions[J]. Organic Process Research & Development, 2002, 6(5): 660-664 [6] JAGANATHAN R, CHAUDHARI R V, RAMACHANDRAN P A. Hydration of propylene oxide using ion-exchange resin catalyst in a slurry reactor[J]. AIChE Journal, 1984, 30(1): 1-7 [7] REMAN W G, KRUCHTEN E V. Process for the preparation of alkylene glycols: US5488184A[P]. 1996-01-30 [8] AKYALCIN S. Kinetic study of the hydration of propylene oxide in the presence of heterogeneous catalyst[J]. Chemical Industry and Chemical Engineering Quarterly, 2017, 23(4): 573-580 [9] 刘卓, 吴功德, 孙楠楠, 等. 固体强碱绿色催化环氧丙烷水解合成1, 2-丙二醇[J]. 精细化工, 2008, 25(11): 1132-1134, 1144 LIU Zhuo, WU Gongde, SUN Nannan, et al. Synthesis of propylene glycol from propylene oxide by hydrolysis over green catalyst of solid strong base[J]. Fine Chemicals, 2008, 25(11): 1132-1134, 1144(in Chinese) [10] LIU J, YANG J, LI C, et al. Catalytic applications of sulfonic acid functionalized mesoporous organosilicas with different fraction of organic groups in the pore wall[J]. Journal of Porous Materials, 2009, 16(3): 273-281 [11] HORBATENKO Y, PÉREZ J P, HERNÁNDEZ P, et al. Reaction mechanisms for the formation of mono- and dipropylene glycol from the propylene oxide hydrolysis over ZSM-5 zeolite[J]. The Journal of Physical Chemistry C, 2014, 118(38): 21952-21962 [12] BRITTON E C, SEXTON A R. Method of preparing glycols and monoethers of glycols: US2807651[P]. 1957-09-24 [13] HARVEY R. Preparation of reaction products of propylene oxide and alcohols: US2053708A[P]. 1936-09-08 [14] ERNEST J, LANGDON W K, LEVIS J, et al. Substituted morpholines: US3154544A[P]. 1964-10-27 [15] 梁荣宁. 相转移催化法合成一缩二丙二醇的工艺研究[D]. 山东青岛: 青岛科技大学, 2008 LIANG Rongning. Synthesis of dipropylene glycol by phase transfer catalysis[D].Shandong Qingdao: Qingdao University of Science & Technology, 2008 (in Chinese) [16] 王立军, 李军. β沸石催化精馏合成丙二醇单乙醚的研究[J]. 精细石油化工, 2003, 20(5): 17-19 WANG Lijun, LI Jun. Study on synthesis of propylene glycol monoethyl ether with β zeolite as catalyst by catalytic distillation[J]. Speciality Petrochemicals, 2003, 20(5): 17-19(in Chinese) [17] 朱俊健, 黄鑫, 孙昊, 等. 连续管式反应制备丙二醇丁醚的研究[J]. 现代化工, 2017, 37(5): 181-184 ZHU Junjian, HUANG Xin, SUN Hao, et al. Study on preparation of propylene glycol butyl ether by continuous tube reaction[J]. Modern Chemical Industry, 2017, 37(5): 181-184(in Chinese) [18] CHEN L, SUN M, WANG Z, et al. Hierarchically structured zeolites: From design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294 [19] GACKOWSKI M, DATKA J. Acid properties of hierarchical zeolites Y[J]. Molecules, 2020, 25(5): 1044 [20] ATES A. The modification of aluminium content of natural zeolites with different composition[J]. Powder Technology, 2019, 344: 199-207 [21] YANG H, CHEN Z. Exploring the mechanism and counterion activity regulation in the CoIII(salen)-catalyzed hydration of propylene oxide[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(39): 22417-22425 [22] GUIBERT R M, PLANK C A, GERHARD E R. Kinetics of propylene oxide-oxypropylated glycerol reaction[J]. Industrial & Engineering Chemistry Process Design and Development, 1971, 10(4): 497-500 [23] LARRAÑAGA O, DE CÓZAR A, COSSÍO F P. Mono- and di-alkylation processes of DNA bases by nitrogen mustard mechlorethamine[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2017, 18(23): 3390-3401 [24] GUAN L, HUANG C, HAN D, et al. HZSM-5 zeolite cross-linked with ultrathin siliceous layer for intensifying catalytic cracking and diffusion of n-butane[J]. Fuel, 2022, 315: 123252 [25] GORZIN F, DARIAN J T, YARIPOUR F, et al. Novel hierarchical HZSM-5 zeolites prepared by combining desilication and steaming modification for converting methanol to propylene process[J]. Journal of Porous Materials, 2019, 26(5): 1407-1425 [26] 李君华, 王丽娜, 张丹, 等. ZSM-5酸改性对甲醇芳构化性能的影响[J]. 燃料化学学报, 2019, 47(8): 957-963 LI Junhua, WANG Lina, ZHANG Dan, et al. Effect of ZSM-5 acid modification on aromatization performance of methanol[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 957-963(in Chinese) [27] LI J, HAN D, ZI Z, et al. The synthesis of H[Fe, Al]ZSM-5 zeolites with uniform nanocrystals for dimethyl ether to gasoline reaction[J]. Fuel, 2022, 313: 122643 [28] WANG Z, ZHANG R, WANG J, et al. Hierarchical zeolites obtained by alkaline treatment for enhanced n-pentane catalytic cracking[J]. Fuel, 2022, 313: 122669 [29] BOSNAR S, RAC V, STOŠIĆ D, et al. Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study[J]. Microporous and Mesoporous Materials, 2022, 329: 111534 [30] QURESHI Z S, ELLOUH M, AITANI A, et al. Efficient conversion of light paraffinic naphtha to aromatics over metal-modified Mo/MFI catalysts[J]. Journal of Porous Materials, 2022, 29(3): 683-692 [31] LIU H, WANG Y, YE T, et al. Fully utilizing seeds solution for solvent-free synthesized nanosized TS-1 zeolites with efficient epoxidation of chloropropene[J]. Journal of Solid State Chemistry France, 2022, 307: 122844 [32] ROOHOLLAHI H, HALLADJ R, ASKARI S. Catalytic longevity of hierarchical SAPO-34/AlMCM-41 nanocomposite molecular sieve in methanol-to-olefins process[J]. Combinatorial Chemistry & High Throughput Screening, 2021, 24(4): 521-533 [33] TONUTTI L, DECOLATTI H, QUERINI C, et al. Hierarchical H-ZSM-5 zeolite and sulfonic SBA-15: The properties of acidic H and behavior in acetylation and alkylation reactions[J]. Microporous and Mesoporous Materials, 2020, 305(prepublish):110284
|