[1] Lukatskaya M R, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nature Communications, 2016, doi:10.1038/ncomms12647
[2] Hu E, Wang X, Yu X, et al. Probing the complexities of structural changes in layered oxide cathode materials for Li-ion batteries during fast charge-discharge cycling and heating[J]. Acc Chem Res, 2018, 51(2):290-298
[3] Huang B, Pan Z, Su X, et al. Tin-Based materials as versatile anodes for alkali (earth)-ion batteries[J]. Journal of Power Sources, 2018, 395:41-59
[4] Huang J, Lin X, Tan H, et al. Bismuth microparticles as advanced anodes for potassium-ion battery[J]. Advanced Energy Materials, 2018, 8(19):1703496
[5] Choi J U, Kim J, Hwang J Y, et al. K0.54[Co0.5Mn0.5]O2:New cathode with high power capability for potassium-ion batteries[J]. Nano Energy, 2019, 61:284-294
[6] Ren W, Chen X, Zhao C. Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.201801413
[7] Xing Z, Qi Y, Jian Z, et al. Polynanocrystalline graphite:A new carbon anode with superior cycling performance for K-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(5):4343-4351
[8] Cao K, Liu H, Li W, et al. CuO nanoplates for high-performance potassium-ion batteries[J]. Small, 2019, doi:doi.org/10.1002/smll.201901775
[9] Li L, Zhang W, Wang X, et al. Hollow-Carbon-Templated few-layered V5S8 nanosheets enabling ultrafast potassium storage and long-term cycling[J]. ACS Nano, 2019, 13(7):7939-7948
[10] Yang C, Feng J, Lü F, et al. Metallic graphene-like VSe2 ultrathin nanosheets:Superior potassium-ion storage and their working mechanism[J]. Advanced Materials, 2018, doi:10.1002/adma.201800036
[11] Ming F, Liang H, Zhang W, et al. Porous MXenes enable high performance potassium ion capacitors[J]. Nano Energy, 2019, 62:853-860
[12] 张鼎, 燕永旺, 史文静, 等. 钾离子电池研究进展[J]. 化工进展, 2018, 37(10):3772-3780 Zhang Ding, Yan Yongwang, Shi Wenjing, et al. Research progress of potassium-ion batteries[J]. Chemical Industry and Engineering Progress, 2018, 37(10):3772-3780(in Chinese)
[13] Nobuhara K, Nakayama H, Nose M, et al. First-Principles study of alkali metal-graphite intercalation compounds[J]. J Power Sources, 2013, 243:585-587
[14] Liu Y, Fan F, Wang J, et al. In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers[J]. Nano Letters, 2014, 14(6):3445-3452
[15] Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36):11566-11569
[16] Komaba S, Hasegawa T, Dahbi M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications, 2015, 60:172-175
[17] Zhao J, Zo X, Zhu Y, et al. Electrochemical intercalation of potassium into graphite[J]. Advanced Functional Materials, 2016, 26(44):8103-8110
[18] Xu Z, Lü X, Chen J, et al. Dispersion-Corrected DFT investigation on defect chemistry and potassium migration in potassium-graphite intercalation compounds for potassium ion batteries anode materials[J]. Carbon, 2016, 107:885-894
[19] Fan L, Liu Q, Chen S, et al. Potassium-Based dual ion battery with dual-graphite electrode[J]. Small, 2017, doi:doi.org/10.1002/smll.201701011
[20] Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.201801149
[21] Xu Y, Tao Y, Zheng X, et al. A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm-3[J]. Advanced Materials, 2015, 27(48):8082-8087
[22] Lyu H, Li P, Liu J, et al. Aromatic polyimide/graphene composite organic cathodes for fast and sustainable lithium-ion batteries[J]. ChemSusChem, 2018, 11(4):763-772
[23] Liu J, Zhang Y, Zhang L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials, 2019, doi:10.1002/adma.201901261
[24] Li N, Du X, Shi J, et al. Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors[J]. Electrochimica Acta, 2018, 281:459-465
[25] Pang Q, Sun C, Yu Y, et al. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.201800144
[26] Zhu Y, Zhan K, Hou X. Interface design of nanochannels for energy utilization[J]. ACS Nano, 2018, 12(2):908-911
[27] Tran N Q, Kang B K, Woo M H, et al. Enrichment of pyrrolic nitrogen by hole defects in nitrogen and sulfur Co-doped graphene hydrogel for flexible supercapacitors[J]. ChemSusChem, 2016, 9(16):2261-2268
[28] Zhang S, Wang G, Zhang Z, et al. 3D graphene networks encapsulated with ultrathin SnS nanosheets@hollow mesoporous carbon spheres nanocomposite with pseudocapacitance-enhanced lithium and sodium storage kinetics[J]. Small, 2019, doi:10.1002/smll.201900565
[29] Luo W, Wan J, Ozdemir B, et al. Potassium ion batteries with graphitic materials[J]. Nano Letters, 2015, 15(11):7671-7677
[30] Share K, Cohn A P, Carter R, et al. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes[J]. ACS Nano, 2016, 10(10):9738-9744
[31] Ju Z, Li P, Ma G, et al. Few layer nitrogen-doped graphene with highly reversible potassium storage[J]. Energy Storage Materials, 2018, 11:38-46
[32] Li J, Qin W, Xie J, et al. Sulphur-Doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage[J]. Nano Energy, 2018, 53:415-424
[33] Qiu W, Xiao H, Li Y, et al. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries[J]. Small, 2019, doi:10.1002/smll.201901285
[34] Wang G, Xiong X, Xie D, et al. Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(47):24317-24323
[35] Li D, Ren X, Ai Q, et al. Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.201802386
[36] Chen M, Wang W, Liang X, et al. Sulfur/Oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.201800171
[37] Liu S, Yang B, Zhou J, et al. Nitrogen-Rich carbon-onion-constructed nanosheets:An ultrafast and ultrastable dual anode material for sodium and potassium storage[J]. Journal of Materials Chemistry A, 2019, 7(31):18499-18509
[38] Li Y, Yang C, Zheng F, et al. High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage[J]. Journal of Materials Chemistry A, 2018, 6(37):17959-17966
[39] Xiong P, Zhao X, Xu Y. Nitrogen-Doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes[J]. ChemSusChem, 2018, 11(1):202-208
[40] He X, Liao J, Tang Z, et al. Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries[J]. Journal of Power Sources, 2018, 396:533-541
[41] Li H, Cheng Z, Zhang Q, et al. Bacterial-Derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters, 2018, 18(11):7407-7413
[42] Gao C, Wang Q, Luo S, et al. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum[J]. Journal of Power Sources, 2019, 415:165-171
[43] Pramudita J C, Sehrawat D, Goonetilleke D, et al. An initial review of the status of electrode materials for potassium-ion batteries[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201602911
[44] 李文挺, 安胜利, 邱新平. 钾离子电池关键材料的研究进展[J]. 储能科学与技术, 2018, 7(3):365-375 Li Wenting, An Shengli, Qiu Xinping. Research on key materials for potassium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(3):365-375(in Chinese)
[45] Zhang J, Liu T, Cheng X, et al. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage[J]. Nano Energy, 2019, 60:340-361
[46] Yang J, Ju Z, Jiang Y, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage[J]. Advanced Materials, 2018, doi:10.1002/adma.201700104
|