[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657
[2] Armand M B, Chabagno J M, Duclot M J. Polyethers as solid electrolyte[C]//in Fast ion transport in solids, electrodes and Electrolytes, Lake Geneva:1979
[3] Palacín M R. Recent advances in rechargeable battery materials:A chemist's perspective[J]. Chemical Society Reviews, 2009, 38(9):2565-2575
[4] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367
[5] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10):4303-4418
[6] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603
[7] Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2):513-537
[8] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1):19-29
[9] Xia S, Wu X, Zhang Z, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem, 2019, 5(4):753-785
[10] Yue L, Ma J, Zhang J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries[J]. Energy Storage Materials, 2016, 5:139-164
[11] Luntz A C, Voss J, Reuter K. Interfacial challenges in solid-state Li ion batteries[J]. The Journal of Physical Chemistry Letters, 2015, 6(22):4599-4604
[12] Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, doi:10.1016/0032-3861(73)90146-8
[13] Gorecki W, Jeannin M, Belorizky E, et al. Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes[J]. Journal of Physics:Condensed Matter, 1995, 7(34):6823-6832
[14] Saito Y, Takeda S, Yamagami S, et al. Effect of the morphological features of the poly(vinylidene difluoride)-based gel electrolytes on the ionic mobility for lithium secondary batteries[J]. Macromolecules, 2019, 52(5):2112-2119
[15] Peramunage D. Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells[J]. Journal of the Electrochemical Society, 1998, 145(8):2609-2615
[16] Xiao Q, Wang X, Li W, et al. Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery[J]. Journal of Membrane Science, 2009, 334(1/2):117-122
[17] Wang W, Yuan Y, Wang J, et al. Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDF-HFP separator[J]. ACS Applied Energy Materials, 2019, 2(6):4167-4174
[18] Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4):1-16
[19] Christie A M, Lilley S J, Staunton E, et al. Increasing the conductivity of crystalline polymer electrolytes[J]. Nature, 2005, 433(7021):50-53
[20] MacGlashan G S, Andreev Y G, Bruce P G. Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6[J]. Nature, 1999, 398(6730):792-794
[21] Aziz S B, Woo T J, Kadir M F Z, et al. A conceptual review on polymer electrolytes and ion transport models[J]. Journal of Science:Advanced Materials and Devices, 2018, 3(1):1-17
[22] Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries:Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5):2525-2540
[23] Xue Z, He D, Xie X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38):19218-19253
[24] Diederichsen K M, McShane E J, McCloskey B D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries[J]. ACS Energy Letters, 2017, 2(11):2563-2575
[25] Li S, Mohamed A I, Pande V, et al. Single-Ion homopolymer electrolytes with high transference number prepared by click chemistry and photoinduced metal-free atom-transfer radical polymerization[J]. ACS Energy Letters, 2018, 3(1):20-27
[26] Lopez J, MacKanic D G, Cui Y, et al. Designing polymers for advanced battery chemistries[J]. Nature Reviews Materials, 2019, 4(5):312-330
[27] Hao X, Zhao Q, Su S, et al. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries[J]. Advanced Energy Materials, 2019, doi:10.1002/aenm.201901604
[28] Cheng X, Pan J, Zhao Y, et al. Gel polymer electrolytes for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8(7):1-16
[29] Song J, Wang Y, Wan C. Review of gel-type polymer electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 1999, 77(2):183-197
[30] Cho Y G, Hwang C, Cheong D S, et al. Gel polymer electrolytes:Gel/Solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems[J]. Advanced Materials, 2019, doi:10.1002/adma.201970144
[31] Judez X, Martinez-Ibañez M, Santiago A, et al. Quasi-Solid-State electrolytes for lithium sulfur batteries:Advances and perspectives[J]. Journal of Power Sources, 2019, 438:226985
[32] Agostini M, Lim D H, Sadd M, et al. Stabilizing the performance of high-capacity sulfur composite electrodes by a new gel polymer electrolyte configuration[J]. ChemSusChem, 2017, 10(17):3490-3496
[33] Liu M, Zhou D, He Y, et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries[J]. Nano Energy, 2016, 22:278-289
[34] Zhou D, Tkacheva A, Tang X, et al. Stable conversion chemistry-based lithium metal batteries enabled by hierarchical multifunctional polymer electrolytes with near-single ion conduction[J]. Angewandte Chemie International Edition, 2019, 58(18):6001-6006
[35] Lu Q, He Y, Yu Q, et al. Dendrite-Free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Materials, 2017, doi:10.1002/adma.201604460
[36] Bouchet R, Maria S, Meziane R, et al. Single-Ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nature Materials, 2013, 12(5):452-457
[37] Zhang Y, Lu W, Cong L, et al. Cross-Linking network based on poly(ethylene oxide):Solid polymer electrolyte for room temperature lithium battery[J]. Journal of Power Sources, 2019, 420:63-72
[38] Kelly I, Owen J R, Steele B C H. Mixed polyether lithium-ion conductors[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 168(1/2):467-478
[39] O'Reilly M V, Masser H, King D R, et al. Ionic aggregate dissolution and conduction in a plasticized single-ion polymer conductor[J]. Polymer, 2015, 59:133-143
[40] Wan Z, Lei D, Yang W, et al. All-Solid-State batteries:Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1):1970006
[41] Lin D, Liu W, Liu Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2016, 16(1):459-465
[42] Zhang J, Yang J, Dong T, et al. Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries:Advances and perspective[J]. Small, 2018, 14(36):1-16
[43] Zhou D, Shanmukaraj D, Tkacheva A, et al. Polymer electrolytes for lithium-based batteries:Advances and prospects[J]. Chem, 2019, 5(9):2326-2352
[44] Kimura K, Yajima M, Tominaga Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J]. Electrochemistry Communications, 2016, 66:46-48
[45] Chai J, Liu Z, Ma J, et al. In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2):1-9
[46] Zhang J, Zhao J, Yue L, et al. Safety-Reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, doi:10.1002/aenm.201501082
[47] Zhang J, Zang X, Wen H, et al. High-Voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry A, 2017, 5(10):4940-4948
[48] Alarco P J, Abu-Lebdeh Y, Abouimrane A, et al. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors[J]. Nature Materials, 2004, 3(7):476-481
[49] Fan L, Maier J. Composite effects in poly(ethylene oxide)-succinonitrile based all-solid electrolytes[J]. Electrochemistry Communications, 2006, 8(11):1753-1756
[50] Zhou D, He Y, Liu R, et al. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2015, doi:10.1002/aenm.201500353
[51] Kang Y, Lee J, Suh D H, et al. A new polysiloxane based cross-linker for solid polymer electrolyte[J]. Journal of Power Sources, 2005, 146(1/2):391-396
[52] Zhang Z, Sherlock D, West R, et al. Cross-Linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains:Synthesis and conductivity[J]. Macromolecules, 2003, 36(24):9176-9180
[53] Zhang Z, Jin J, Bautista F, et al. Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes[J]. Solid State Ionics, 2004, 170(3/4):233-238
[54] Zhao Q, Liu X, Stalin S, et al. Solid-State polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nature Energy, 2019, 4(5):365-373
[55] Zhang X, Wang S, Xue C, et al. Self-Suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes[J]. Advanced Materials, 2019, 31(11):1-9
[56] MacKanic D G, Michaels W, Lee M, et al. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte[J]. Advanced Energy Materials, 2018, 8(25):1-11
[57] Xin S, You Y, Wang S, et al. Solid-State lithium metal batteries promoted by nanotechnology:progress and prospects[J]. ACS Energy Letters, 2017, 2(6):1385-1394
[58] Appetecchi G, Croce F, Persi L, et al. Transport and interfacial properties of composite polymer electrolytes[J]. Electrochimica Acta, 2000, 45(8/9):1481-1490
[59] Ma C, Zhang J, Xu M, et al. Cross-Linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries[J]. Journal of Power Sources, 2016, 317:103-111
[60] Croce F, Persi L, Scrosati B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta, 2001, 46(16):2457-2461
[61] Liu W, Lin D, Sun J, et al. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires[J]. ACS Nano, 2016, 10(12):11407-11413
[62] Zheng J, Tang M, Hu Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie International Edition, 2016, 55(40):12538-12542
[63] Lee S S, Lim Y J, Kim H W, et al. Electrochemical properties of a ceramic-polymer-composite-solid electrolyte for Li-ion batteries[J]. Solid State Ionics, 2016, 284:20-24
[64] Liu W, Liu N, Sun J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4):2740-2745
[65] Liu W, Lee S W, Lin D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2(5):1-7
[66] Huang Z, Pang W, Liang P, et al. A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte:enhanced thermal and electrochemical properties[J]. Journal of Materials Chemistry A, 2019, 7(27):16425-16436
[67] Liang J, Zeng X, Zhang X, et al. Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries[J]. Journal of the American Chemical Society, 2019, 141(23):9165-9169
[68] Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7):705-711
|