[1] Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414:345-352
[2] 毛宗强, 谢晓峰, 刘志祥. 燃料电池[M]. 北京:化学工业出版社, 2005
[3] Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts[J]. Science, 2003, 301(5635):935-938
[4] Cheng X, Shi Z, Glass N, et al. A review of PEM hydrogen fuel cell contamination:Impacts, mechanisms, and mitigation[J]. J Power Sources, 2007, 165(2):739-756
[5] Choudhary T V, Goodman D W. CO-Free fuel processing for fuel cell applications[J]. Catal Today, 2002, 77(1/2):65-78
[6] Tanaka H, Kuriyama M, Ishida Y, et al. Preferential CO oxidation in hydrogen-rich stream over Pt catalysts modified with alkali metals:part I. Catalytic performance[J]. Appl Catal A Gen, 2008, 343(1/2):117-124
[7] Chin S Y, Alexeev O S, Amiridis M D. Preferential oxidation of CO under excess H2 conditions over Ru catalysts[J]. Appl Catal A Gen, 2005, 286(2):157-166
[8] Mhadeshwar A B, Vlachos D G. Hierarchical multiscale surface reaction mechanism development:CO and H2 oxidation, water gas shift, and preferential oxidation of CO on Rh[J]. J Catal, 2005, 234(1):48-63
[9] Pozdnyakova O, Teschner D, Wootsch A, et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part Ⅱ:Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism[J]. J Catal, 2006, 237(1):17-28
[10] Tu Y, Luo J, Meng M, et al. Ultrasonic-Assisted synthesis of highly active catalyst Au/MnOx-CeO2 used for the preferential oxidation of CO in H2-rich stream[J]. Int J Hydrogen Energy, 2009, 34(9):3743-3754
[11] Chang L, Yeh Y L, Chen Y. Preferential oxidation of CO in hydrogen stream over nano-gold catalysts prepared by photodeposition method[J]. Int J Hydrogen Energy, 2008, 33(7):1965-1974
[12] Rossignol C, Arrii S, Morfin F, Piccolo L, et al. Selective oxidation of CO over model gold-based catalysts in the presence of H2[J]. J Catal, 2005, 230(2):476-483
[13] Yu Y, Takei T, Ohashi H, et al. Pretreatments of Co3O4 at moderate temperature for CO oxidation at -80℃[J]. J Catal, 2009, 267(2):121-128
[14] Xu C, Liu Y, Zhou C, et al. An in situ dealloying and oxidation route to Co3O4 nanosheets and their ambient-temperature CO oxidation activity[J]. Chem Cat Chem, 2011, 3(2):399-407
[15] Xie X, Li Y, Liu Z, et al. Low-Temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458:746-749
[16] Zhao Z, Lin X, Jin R, et al. MOx(M=Mn, Fe, Ni or Cr) improved supported Co3O4 catalysts on ceria-zirconia nanoparticulate for CO preferential oxidation in H2-rich gases[J]. Appl Catal B Environ, 2012, (115/116):53-62
|