[1] COX P M, BETTS R A, JONES C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408(6809): 184-187 [2] COKOJA M, BRUCKMEIER C, RIEGER B, et al. Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge?[J]. Angewandte Chemie International Edition, 2011, 50(37): 8510-8537 [3] ARESTA M, DIBENEDETTO A. Utilisation of CO2 as a chemical feedstock: Opportunities and challenges[J]. Dalton Transactions, 2007(28): 2975-2992 [4] SONG C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catalysis Today, 2006, 115(1/2/3/4): 2-32 [5] WANG W, WANG S, MA X, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727 [6] BIRDJA Y Y, PÉREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745 [7] DE ARQUER F P G, DINH C T, OZDEN A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm-2[J]. Science, 2020, 367(6478): 661-666 [8] GAO D, ARÁN-AIS R M, JEON H S, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products[J]. Nature Catalysis, 2019, 2(3): 198-210 [9] ROSS M B, DE LUNA P, LI Y, et al. Designing materials for electrochemical carbon dioxide recycling[J]. Nature Catalysis, 2019, 2(8): 648-658 [10] ZHANG Y, SETHURAMAN V, MICHALSKY R, et al. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts[J]. ACS Catalysis, 2014, 4(10): 3742-3748 [11] KIM D, RESASCO J, YU Y, et al. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles[J]. Nature Communications, 2014, 5(1): 1-8 [12] WAN X, LIU X, LI Y, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nature Catalysis, 2019, 2(3): 259-268 [13] ZHAO K, NIE X, WANG H, et al. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon[J]. Nature Communications, 2020, 11(1): 1-10 [14] FENG D, ZHU Y, CHEN P, et al. Recent advances in transition-metal-mediated electrocatalytic CO2 reduction: From homogeneous to heterogeneous systems[J]. Catalysts, 2017, 7(12): 373 [15] HANSEN H A, VARLEY J B, PETERSON A A, et al. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO[J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 388-392 [16] LI M, WANG H, LUO W, et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction[J]. Advanced Materials, 2020, 32(34) [17] LI X, ZENG Y, TUNG C, et al. Unveiling the in situ generation of a monovalent Fe(I) site in the single-Fe-atom catalyst for electrochemical CO2 reduction[J]. ACS Catalysis, 2021, 11(12): 7292-7301 [18] HUANG L, ZHANG X, HAN Y, et al. In situ synthesis of ultrathin metal-organic framework nanosheets: A new method for 2D metal-based nanoporous carbon electrocatalysts[J]. Journal of Materials Chemistry A, 2017, 5(35): 18610-18617 [19] LU B, LIU Q, CHEN S. Electrocatalysis of single-atom sites: Impacts of atomic coordination[J]. ACS Catalysis, 2020, 10(14): 7584-7618 [20] LIANG S, HUANG L, GAO Y, et al. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: The active sites and reaction mechanism[J]. Advanced Science, 2021, 8(24): 2102886 [21] ZHANG H, CHENG W, LUAN D, et al. Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting[J]. Angewandte Chemie International Edition, 2021, 60(24): 13177-13196 [22] HUANG Q, WEI K, XIA H. Investigations in the recrystallization of evolved gases from pyrolysis process of melamine[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(6): 3897-3903 [23] QU Y, CHEN B, LI Z, et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal[J]. Journal of the American Chemical Society, 2019, 141(11): 4505-4509 [24] ZHU Y, SUN W, LUO J, et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts[J]. Nature Communications, 2018, 9(1): 1-9 [25] WANG X, CHEN Z, ZHAO X, et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2[J]. Angewandte Chemie, 2018, 130(7): 1962-1966 [26] GONG Y, JIAO L, QIAN Y, et al. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction[J]. Angewandte Chemie International Edition, 2020, 59(7): 2705-2709 [27] GU Y, WU H, XIONG Z, et al. The electrocapacitive properties of hierarchical porous reduced graphene oxide templated by hydrophobic CaCO3 spheres[J]. Journal of Materials Chemistry A, 2014, 2(2): 451-459 [28] LUONG D X, BETS K V, ALI ALGOZEEB W, et al. Gram-scale bottom-up flash graphene synthesis[J]. Nature, 2020, 577(7792): 647-651 [29] SUN Z, YAN Z, YAO J, et al. Growth of graphene from solid carbon sources[J]. Nature, 2010, 468(7323): 549-552 [30] YANG H, LIN Q, ZHANG C, et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities[J]. Nature Communications, 2020, 11(1): 1-8 [31] JU W, BAGGER A, HAO G, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications, 2017, 8(1): 1-9 [32] YANG H, HUNG S F, LIU S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018, 3(2): 140-147 [33] ZHANG H, LI J, XI S, et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction[J]. Angewandte Chemie (International Ed in English), 2019, 58(42): 14871-14876 [34] ZENG Z, GAN L, YANG H, et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution[J]. Nature Communications, 2021, 12(1): 1-11 [35] YANG X, TAT T, LIBANORI A, et al. Single-atom catalysts with bimetallic centers for high-performance electrochemical CO2 reduction[J]. Materials Today, 2021, 45: 54-61 [36] LU Y, WANG H, YU P, et al. Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction[J]. Nano Energy, 2020, 77: 105158 [37] FAN Q, HOU P, CHOI C, et al. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2[J]. Advanced Energy Materials, 2020, 10(5): 1903068 [38] RONG X, WANG H, LU X, et al. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction[J]. Angewandte Chemie International Edition, 2020, 59(5): 1961-1965 [39] GU J, HSU C S, BAI L, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364: 1091-1094 [40] WANG X, CHEN Z, ZHAO X, et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2[J]. Angewandte Chemie International Edition, 2018, 57(7): 1944-1948 [41] CHEN Z, ZHANG X, LIU W, et al. Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level[J]. Energy & Environmental Science, 2021, 14(4): 2349-2356 [42] WANG X, CHEN Z, ZHAO X, et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2[J]. Angewandte Chemie, 2018, 130(7): 1962-1966 [43] GONG Y, JIAO L, QIAN Y, et al. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction[J]. Angewandte Chemie, 2020, 132(7): 2727-2731
|