[1] TURNER J. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974
[2] LIU W, CUI Y, DU X, et al. High efficiency hydrogen evolution from native biomass electrolysis[J]. Energy & Environmental Science, 2016, 9(2): 467-472
[3] PARTHASARATHY P, NARAYANAN K S. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield: A review[J]. Renewable Energy, 2014, 66: 570-579
[4] KONG Linggang, JIANG Xiaolan. The value and significance of biomass and its development and utilization[J]. Forum on Science and Technology in China, 2007, (9): 100-104(in Chinese) 孔令刚, 蒋晓岚. 生物质及其开发利用的价值与意义[J]. 中国科技论坛, 2007, (9): 100-104
[5] TURNER J, SVERDRUP G, MANN M, et al. Renewable hydrogen production[J]. International Journal of Energy Research, 2008, 32(5): 379-407
[6] LEVIN D, CHAHINE R. Challenges for renewable hydrogen production from biomass[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4962-4969
[7] LU X, XIE S, YANG H, et al. Photoelectrochemical hydrogen production from biomass derivatives and water[J]. Chemical Society Reviews, 2014, 43(22): 7581-7593
[8] WONG Y, WU T, JUAN J. A review of sustainable hydrogen production using seed sludge via dark fermentation[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 471-482
[9] ZHOU Y, JIA C, ZHANG Y, et al. Experimental study on a new process of producing hydrogen in consumption of water and coal[J]. AIChE Journal, 2008, 54(5): 1388-1395
[10] CHEN Y, LAVACCHI A, MILLER H, et al. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis[J]. Nature Communications, 2014, 5(1): 1-6
[11] LIU W, MU W, LIU M, et al. Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier[J]. Nature Communications, 2014, 5(1): 1-8
[12] LIU W, MU W, DENG Y. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion[J]. Angewandte Chemie, 2014, 126(49): 13776-13780
[13] RIVALTA I, BRUDVIG G, BATISTA V. Molecular water oxidation catalysis: A key topic for new sustainable energy conversion schemes[M]. Chichester UK: John Wiley & Sons, Ltd, 2014
[14] LV H, GELETⅡ Y, ZHAO C, et al. Polyoxometalate water oxidation catalysts and the production of green fuel[J]. Chemical Society Reviews, 2012, 41(22): 7572-7589
[15] SYMES M, CRONIN L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J]. Nature Chemistry, 2013, 5(5): 403-409
[16] RAUSCH B, SYMES M, CHISHOLM G, et al. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014, 345(6202): 1326-1330
[17] LIU Jinxin. Research on the construction of oxygen reduction catalysts for fuel cells based on polymer-supported non-precious metals[D]. Guangdong Shenzhen: Shenzhen University, 2016 (in Chinese) 刘金鑫. 基于高分子负载非贵金属构建燃料电池氧还原催化剂的研究[D]. 广东深圳: 深圳大学, 2016
[18] HUANG Huihui. Controlled synthesis of novel carbon-based non-precious metal catalysts with high-efficiency ORR performance[D]. Zhejiang Wenzhou: Wenzhou University, 2015 (in Chinese) 黄慧慧. 新型碳基非贵金属催化剂的可控制备及其高效氧还原性能研究[D]. 浙江温州: 温州大学, 2015
[19] HUANG Mengjie. Study of nitrogen-doped carbon with non-precious metals as efficient catalyst for oxygen reduction[D]. Beijing: Beijing University of Chemical Technology, 2016 (in Chinese) 黄孟杰. 氮掺杂碳载非贵金属的氧还原催化剂研究[D]. 北京: 北京化工大学, 2016
[20] TANG Yang. Design of function-oriented electrochemical systems and preparation of carbon-based composite electrodes[D]. Beijing: Beijing University of Chemical Technology, 2013 (in Chinese) 唐阳. 功能导向的电化学体系建立与碳基复合电极的设计和制备[D]. 北京: 北京化工大学, 2013
[21] YANG Qi, SU Wei, YAO Lan, et al. High efficient hydrogen evolution from glucose electrolysis over liquid phase catalyst[J]. Modern Chemical Industry, 2018, 38(7): 150-153, 155(in Chinese) 杨琦, 苏伟, 姚兰, 等. 高效液相催化电解葡萄糖制氢过程研究[J]. 现代化工, 2018, 38(7): 150-153, 155
[22] SHENG F, YANG Q, CUI D, et al. Pure hydrogen production from polyol electrolysis using polyoxometalates as both a liquid catalyst and a charge carrier[J]. Energy & Fuels, 2020, 34(8): 10282-10289
[23] CAO Huaibao. Study on efficient procedure for the catalytic oxidation of alcohols into aldehydes/ketones using Saccharin/TEMPO[J]. Chemical Research and Application, 2019, 31(9): 1702-1706(in Chinese) 曹怀宝. 以Saccharin/TEMPO高效催化氧化醇制备醛酮的研究[J]. 化学研究与应用, 2019, 31(9): 1702-1706
|