[1] 2013 全球碳排放量数据公布 中国人均首超欧洲[EB/OL]. http://finance.huanqiu.com/view/2014-09/5146643.html: 2014-09-23
[2] 温廷琏. 氢能[J]. 能源技术, 2001, 22(3): 96-98 Wen Tinglian. Hydrogen Energy[J]. Energy Technology, 2001, 22(3): 96-98 (in Chinese)
[3] 顾忠茂.氢能利用与核能制氢研究开发综述[J].原子能科学技术, 2006, 40(1): 30-35 Gu Zhongmao. Summary of research and development of hydrogen energy utilization and hydrogen production by nuclear energy[J]. Atomic Energy Science and Technology, 2006, 40(1): 30-35 (in Chinese)
[4] Kruger P. Appropriate technologies for large-scale production of electricity and hydrogen fuel [J]. International Journal of Hydrogen Energy, 2008, 33(21): 5 881-5 886
[5] 史奇良,陈时熠,薛志鹏,等. 铁基载氧体化学链制氢特性实验研究[J]. 中国电机工程学报, 2011, 31: 168-174 Shi Qiliang, Chen Shiyi, Xue Zhipeng,et al. Experimental investigation of chemical looping hydrogen generation using iron oxides as oxygen carrier [J]. Proceedings of the CSEE, 2011, 31: 168-174 (in Chinese)
[6] 梁皓,宋喜军,尹泽群,等. 化学链制氢中Fe2O3/LaFeO3载氧体的性能研究[J]. 燃料化学学报, 2013, 12: 1 512-1 519 Liang Hao, Song Xijun, Yin Zequn,et al. Performance of Fe2O3/LaFeO3 as oxygen carrier in chemical-looping hydrogen generation [J]. Journal of Fuel Chemistry and Technology, 2013, 12: 1 512-1 519 (in Chinese)
[7] Richter H J, Knoche K F. Reversibility of combustion processes [J]. ACS Symposium Series, 1983, 235(1): 71-86
[8] Anton Messerschmitt. Process of producing hydrogen: DE, 971206 [P]. 1910-09-27
[9] Paolo C, Giovanni L, Alberto M, et al. Three-Reactors chemical looping process for hydrogen production [J]. International Journal of Hydrogen Energy, 2008, 33(9): 2 233-2 245
[10] Fan L, Li F. Chemical looping technology and its fossil energy conversion applications [J]. Industrial and Engineering Chemistry Research, 2010, 49: 10 200-10 211
[11] Adanez J, Abad A, Garcia-Labiano F, et al. Progress in chemical-looping combustion and reforming technologies [J]. Progress in Energy and Combustion Science, 2012, 38: 215-282
[12] Minic D. Hydrogen energy-challenges and perspectives [M]. Croatia: InTech, 2012
[13] Li F, Kim H R, Sridhar D,et al. Syngas chemical looping gasification process: Oxygen carrier particle selection and performance [J]. Energy & Fuels, 2009, 23(8): 4 182-4 189
[14] Adanez J, de Diego L F, Garcia-Labiano F, et al. Selection of oxygen carriers for chemical-looping combustion [J]. Energy Fuels, 2004, 18: 371-377
[15] Yamaguchi D, Tang L, Wong L, et al. Hydrogen production through methane-steam cyclic redox processes with iron-based metal oxides [J]. International Journal of Hydrogen Energy, 2011, 36: 6 646-6 656
[16] Otsuka K, Kaburagi T, Yamada C,et al. Chemical storage of hydrogen by modified iron oxides [J]. Journal of Power Sources, 2003, 122: 111-121
[17] Otsuka K, Yamada C, Kaburagi T, et al. Hydrogen storage and production by redox of iron oxide for polymer electrolyte fuel cell vehicles [J]. International Journal of Hydrogen Energy, 2003, 28: 335-342
[18] Wang H, Wang G, Wang X, et al. Hydrogen production by redox of cation-modified iron oxide [J]. The Journal of Physical Chemistry C, 2008, 112: 5 679-5 688
[19] Liu X, Wang H. Hydrogen production from water decomposition by redox of Fe2O3 modified with single-or double-metal additives [J]. Journal of Solid State Chemistry, 2010, 183: 1 075-1 082
[20] Otsuka K, Takenaka S. Storage and supply of pure hydrogen mediated by the redox of iron oxides [J]. Journal of the Japan Petroleum Institute, 2004, 47: 377-386
[21] Kodama T, Watanabe Y, Miura S, et al. Reactive and selective redox system of Ni(II)-ferrite for a two-step CO and H2 production cycle from carbon and water [J]. Energy, 1996, 21: 1 147-1 156
[22] Kang K S. Reduction characteristics of CuFe2O4 and Fe3O4 by methane; CuFe2O4 as an oxidant for two-step thermochemical methane reforming [J]. International Journal of Hydrogen Energy, 2008, 33: 4 560-4 568
[23] Lori N, Antigoni E, Vassilis Z. La1-xSrxMyFe1-yO3-δ perovskites as oxygen-carrier materials [J]. International Journal of Hydrogen Energy, 2011, 36: 6 657-6 670
[24] 张鑫, 梁皓, 马波, 等. Fe2O3/LaNiO3载氧体在化学链制氢中应用的可行性研究[J].中国稀土学报, 2014, 32(5): 619-627 Zhang Xin, Liang Hao, Ma Bo,et al. Feasibility of implication of Fe2O3/LaNiO3 as oxygen carrier in chemical looping hydrogen generation [J]. Journal of the Chinese Society of Rare Earths, 2014, 32(5): 619-627 (in Chinese)
[25] Leion H, Jerndal E, Steenari B M, et al. Solid fuels in chemical-looping combustion using oxide scale and unprocessed iron ore as oxygen carriers [J]. Fuel, 2009, 88(10): 1 945-1 954
[26] Lorente E, Pen J A, Herguido J. Cycle behaviour of iron ores in the steam-iron process [J]. International Journal of Hydrogen Energy, 2011, 36: 7 043-7 050
[27] Lewis W K, Gilliland E, McBride G T. Gasification of carbon by carbon dioxide in fluidized powder bed [J]. Industrial & Engineering Chemistry Research, 1949, 41: 1 213-1 226
[28] Lewis W K, Gilliland E R, Reed W A. Reaction of methane with copper oxide in a fluidized bed [J]. Industrial & Engineering Chemistry Research, 1949, 41: 1 227-1 237
[29] Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation: Application of chemical-looping combustion [J]. Chemical Engineering Science, 2001, 56(10): 3 101-3 113
[30] Johansson M, Mattisson T, Lyngfelt A. Use of NiO/NiAl2O4 particles in a 10 kW chemical-looping combustor [J]. Industrial & Engineering Chemistry Research, 2006, 45: 5 911-5 919
[31] 吴家桦, 沈来宏, 肖军, 等. 10 kWth级串行流化床中木屑化学链燃烧试验[J]. 化工学报, 2009, 60(8): 2 080-2 088 Wu Jiahua, Shen Laihong, Xiao Jun,et al. Chemical looping combust ion of saw dust in a 10 kWth interconnected fluidized bed [J]. CIESC Journal, 2009, 60(8): 2 080-2 088 (in Chinese)
[32] Thomas T, Fan L, Gupta P,et al. Combustion looping using composite oxygen carriers: US, 7767191 [P]. 2010-08-03
[33] Sridhar D, Tong A, Kim H, et al. Syngas chemical looping process: Design and construction of a 25 kWth subpilot unit [J]. Energy & Fuels, 2012, 26 (4): 2 292-2 302
[34] Tong A, Sridhar D, Sun Z, et al. Continuous high purity hydrogen generation from a syngas chemical looping 25 kWth sub-pilot unit with 100% carbon capture [J]. Fuel, 2013, 103: 495-505
[35] Kim H R, Wang D, Zeng L, et al. Coal direct chemical looping combustion process: design and operation of a 25-kWth sub-pilot unit [J]. Fuel, 2013, 108: 370-384
[36] Bayham S C, Kim H R, Wang D, et al. Iron-Based coal direct chemical looping combustion process: 200 h continuous operation of a 25 kW subpilot unit [J]. Energy & Fuels, 2013, 27 (3): 1 347-1 356
[37] Müller C R, Bohn C D, Song Q,et al. The production of separate streams of pure hydrogen and carbon dioxide from coal via an iron-oxide redox cycle [J]. Chemical Engineering Journal, 2011, 166(3): 1 052-1 060
[38] Bohn C D, Müller C R, Cleeton J P,et al. Production of very pure hydrogen with simultaneous capture of carbon dioxide using the redox reactions of iron oxides in packed beds [J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7 623-7 630
[39] Gupta P, Velazquez-Vargas L G, Fan L S. Syngas redox (SGR) process to produce hydrogen from coal derived syngas [J]. Energy & Fuels, 2007, 21(5): 2 900-2 908
[40] Steinfeld A, Frei A, Kuhn P. Thermoanalysis of the combined Fe3O4-reduction and CH4-reforming processes [J]. Metallurgical and Materials Transactions B, 1995, 26(3): 509-515
[41] Fan L S, Li F X, Ramkumar S. Utilization of chemical looping strategy in coal gasification processes [J]. Particuology, 2008, 6(3): 131-142
[42] 向文国,陈盈盈. 铁法链式反应器煤基氢电联产系统性能模拟[J]. 中国电机工程学报, 2007, 27(23): 45-47 Xiang Wenguo, Chen Yingying.Carbon-Free co-production of hydrogen and electricity from coal using chemical looping reactors [J]. Proceedings of the CSEE, 2007, 27(23): 45-47 (in Chinese)
[43] Yang J B, Cai N S, Li Z S. Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char [J]. Energy & Fuels, 2008, 22(4): 2 570-2 579
[44] Li F X, Zeng L A, Fan L S. Biomass direct chemical looping process: Process simulation [J]. Fuel, 2010, 89(12): 3 773-3 784
|