[1] 郭建春, 马莅, 卢聪. 中国致密油藏压裂驱油技术进展及发展方向[J]. 石油学报, 2022, 43(12): 1788-1797 GUO Jianchun, MA Li, LU Cong. Progress and development directions of fracturing flooding technology for tight reservoirs in China[J]. Acta Petrolei Sinica, 2022, 43(12): 1788-1797(in Chinese)
[2] 尚丹森, 伊卓, 刘希, 等. 低渗透油藏驱油用纳米流体的研究进展[J]. 石油化工, 2023, 52(1): 131-137 SHANG Dansen, YI Zhuo, LIU Xi, et al. Research progress on nano-fluid for oil displacement in low permeability reservoirs[J]. Petrochemical Technology, 2023, 52(1): 131-137(in Chinese)
[3] 李华兵, 李建霆, 李文宏, 等. 低渗透油藏驱油用缔合聚合物的合成及其油藏适应性研究[J]. 油气藏评价与开发, 2020, 10(6): 24-32 LI Huabing, LI Jianting, LI Wenhong, et al. Synthesis of associative polymer for flooding in low permeability reservoir and its reservoir adaptability[J]. Reservoir Evaluation and Development, 2020, 10(6): 24-32(in Chinese)
[4] 李帮军, 路宏勋, 宜海友, 等. 均质致密油藏表面活性剂驱油效率研究[J]. 当代化工, 2022, 51(9): 2034-2038 LI Bangjun, LU Hongxun, YI Haiyou, et al. Study on surfactant flooding efficiency of homogeneous tight oil reservoirs[J]. Contemporary Chemical Industry, 2022, 51(9): 2034-2038(in Chinese)
[5] 张西子. 聚合物驱油技术提高油田采收率分析与研究[J]. 内江科技, 2022, 43(9): 79-80
[6] 张辰君, 金旭, 袁彬, 等. 纳米驱油材料提高采收率研究进展、挑战及前景[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 55-70 ZHANG Chenjun, JIN Xu, YUAN Bin, et al. Research progress, challenge and prospect of nanoscale oil-displacing materials for enhanced oil recovery[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(1): 55-70(in Chinese)
[7] KEYKHOSRAVI A, VANANI M B, DARYASAFAR A, et al. Comparative study of different enhanced oil recovery scenarios by silica nanoparticles: An approach to time-dependent wettability alteration in carbonates[J]. Journal of Molecular Liquids, 2021, 324: 115093
[8] AGHAJANZADEH M R, AHMADI P, SHARIFI M, et al. Wettability modification of oil-wet carbonate reservoirs using silica-based nanofluid: An experimental approach[J]. Journal of Petroleum Science and Engineering, 2019, 178: 700-710
[9] BEHZADI A, MOHAMMADI A. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery[J]. Journal of Nanoparticle Research, 2016, 18(9): 266
[10] ZARGARTALEBI M, KHARRAT R, BARATI N. Enhancement of surfactant flooding performance by the use of silica nanoparticles[J]. Fuel, 2015, 143: 21-27
[11] LI Y, DAI C, ZHOU H, et al. Investigation of spontaneous imbibition by using a surfactant-free active silica water-based nanofluid for enhanced oil recovery[J]. Energy & Fuels, 2018, 32(1): 287-293
[12] BAI Y, PU C, LIU S, et al. A novel amphiphilic Janus nano-silica for enhanced oil recovery in low-permeability reservoirs: An experimental study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637: 128279
[13] 袁美和. 纳米二氧化硅改性及其复合降黏剂的合成与性能评价[D]. 天津: 天津大学, 2021 YUAN Meihe. Modification of nano-silica and synthesis and performance evaluation of its composite viscosity reducer[D]. Tianjin: Tianjin University, 2021 (in Chinese)
[14] 邢洋. 基于二氧化硅的新型Janus纳米复合粒子的制备及其分析应用[D]. 太原: 山西大学, 2020 XING Yang. Preparation and analytical application of novel Janus nano-composite particles based on silica[D]. Taiyuan: Shanxi University, 2020 (in Chinese)
[15] 梁玉凯, 于晓聪, 袁辉, 等. 低渗透油藏自发生成中相微乳液洗油体系[J]. 油田化学, 2021, 38(4): 690-696 LIANG Yukai, YU Xiaocong, YUAN Hui, et al. Spontaneous formation of middle-phase microemulsion oil washing system in low permeability reservoir[J]. Oilfield Chemistry, 2021, 38(4): 690-696(in Chinese)
|