[1] BLOMGREN G E. The development and future of lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 164(1):A5019-A5025 [2] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4):1-16 [3] LI M, WANG C, CHEN Z, et al. New concepts in electrolytes[J]. Chemical Reviews, 2020, 120(14):6783-6819 [4] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3):194-206 [5] FORSYTH M, PORCARELLI L, WANG X, et al. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries[J]. Accounts of Chemical Research, 2019, 52(3):686-694 [6] ISIK M, LONJARET T, SARDON H, et al. Cholinium-based ion gels as solid electrolytes for long-term cutaneous electrophysiology[J]. Journal of Materials Chemistry C, 2015, 3(34):8942-8948 [7] TOMÉ L C, MARRUCHO I M. Ionic liquid-based materials:A platform to design engineered CO2 separation membranes[J]. Chemical Society Reviews, 2016, 45(10):2785-2824 [8] 岳旭东, 袁冰, 朱国强, 等. 低共熔溶剂在有机合成和萃取分离中的应用进展[J]. 化工进展, 2018, 37(7):2627-2634 YUE Xudong, YUAN Bing, ZHU Guoqiang, et al. Development in the applications of deep eutectic solvents in organic synthesis and extraction separation[J]. Chemical Industry and Engineering Progress, 2018, 37(7):2627-2634(in Chinese) [9] BIRIA S, PATHREEKER S, GENIER F S, et al. A highly conductive and thermally stable ionic liquid gel electrolyte for calcium-ion batteries[J]. ACS Applied Polymer Materials, 2020, 2(6):2111-2118 [10] CARASEK E, BERNARDI G, MORELLI D, et al. Sustainable green solvents for microextraction techniques:Recent developments and applications[J]. Journal of Chromatography A, 2021, doi:10.1016/j.chroma.2021.461944 [11] YANG T, ZHAO L, WANG J, et al. Improving whole-cell biocatalysis by addition of deep eutectic solvents and natural deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7):5713-5722 [12] HANSEN B B, SPITTLE S, CHEN B, et al. Deep eutectic solvents:A review of fundamentals and applications[J]. Chemical Reviews, 2021, 121(3):1232-1285 [13] LOMBA L, RIBATE M P, SANGÜESA E, et al. Deep eutectic solvents:Are they safe?[J]. Applied Sciences, 2021, doi:10.3390/app112110061 [14] ABBOTT A P, BOOTHBY D, CAPPER G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids:Versatile alternatives to ionic liquids[J]. Journal of the American Chemical Society, 2004, 126(29):9142-9147 [15] HALLETT J E, HAYLER H J, PERKIN S. Nanolubrication in deep eutectic solvents[J]. Physical Chemistry Chemical Physics:PCCP, 2020, 22(36):20253-20264 [16] CICCO L, DILAURO G, PERNA F M, et al. Advances in deep eutectic solvents and water:Applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds[J]. Organic & Biomolecular Chemistry, 2021, 19(12):2558-2577 [17] QIN H, HU X, WANG J, et al. Overview of acidic deep eutectic solvents on synthesis, properties and applications[J]. Green Energy & Environment, 2020, 5(1):8-21 [18] MUKHERJEE P. Green chemistry-a novel approach towards sustainability[J]. Journal of the Chilean Chemical Society, 2021, 66(1):5075-5080 [19] MOTA-MORALES J D, SÁNCHEZ-LEIJA R J, CARRANZA A, et al. Free-radical polymerizations of and in deep eutectic solvents:Green synthesis of functional materials[J]. Progress in Polymer Science, 2018, 78:139-153 [20] SÁNCHEZ-LEIJA R J, LÓPEZ-SALAS N, FIERRO J L G, et al. Deep eutectic solvents as active media for the preparation of highly conducting 3D free-standing PANI xerogels and their derived N-doped and N-, P-codoped porous carbons[J]. Carbon, 2019, 146:813-826 [21] TOMÉ L C, MECERREYES D. Emerging ionic soft materials based on deep eutectic solvents[J]. The Journal of Physical Chemistry B, 2020, 124(39):8465-8478 [22] ISIK M, RUIPEREZ F, SARDON H, et al. Innovative poly(ionic liquid)s by the polymerization of deep eutectic monomers[J]. Macromolecular Rapid Communications, 2016, 37(14):1135-1142 [23] WANG Y, CHEN W, ZHAO Q, et al. Ionicity of deep eutectic solvents by Walden plot and pulsed field gradient nuclear magnetic resonance (PFG-NMR)[J]. Physical Chemistry Chemical Physics:PCCP, 2020, 22(44):25760-25768 [24] HONG S, YUAN Y, LIU C, et al. A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors[J]. Journal of Materials Chemistry C, 2020, 8(2):550-560 [25] MUKESH C, GUPTA R, SRIVASTAVA D N, et al. Preparation of a natural deep eutectic solvent mediated self polymerized highly flexible transparent gel having super capacitive behaviour[J]. RSC Advances, 2016, 6(34):28586-28592 [26] JOOS B, VRANKEN T, MARCHAL W, et al. Eutectogels:A new class of solid composite electrolytes for Li/Li-ion batteries[J]. Chemistry of Materials, 2018, 30(3):655-662 [27] QIN H, OWYEUNG R E, SONKUSALE S R, et al. Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing[J]. Journal of Materials Chemistry C, 2019, 7(3):601-608 [28] ZHANG L, JIANG D, DONG T, et al. Overview of ionogels in flexible electronics[J]. Chemical Record (New York, N Y), 2020, 20(9):948-967 [29] IQBAL S M A, MAHGOUB I, DU E, et al. Advances in healthcare wearable devices[J]. Npj Flexible Electronics, 2021, 5(1):1-14 [30] JOOS B, VOLDERS J, DA CRUZ R R, et al. Polymeric backbone eutectogels as a new generation of hybrid solid-state electrolytes[J]. Chemistry of Materials, 2020, 32(9):3783-3793 [31] LOGAN M W, LANGEVIN S, TAN B, et al. UV-cured eutectic gel polymer electrolytes for safe and robust Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(17):8485-8495 [32] JAUMAUX P, LIU Q, ZHOU D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries[J]. Angewandte Chemie (International Ed in English), 2020, 59(23):9134-9142 [33] ZHU Q, ZHAO D, CHENG M, et al. A new view of supercapacitors:Integrated supercapacitors[J]. Advanced Energy Materials, 2019, doi:10.1002/aenm.201901081 [34] QIN H, PANZER M J. Chemically cross-linked poly(2-hydroxyethyl methacrylate)-supported deep eutectic solvent gel electrolytes for eco-friendly supercapacitors[J]. ChemElectroChem, 2017, 4(10):2556-2562 [35] BU X, GE Y, WANG L, et al. Design of highly stretchable deep eutectic solvent-based ionic gel electrolyte with high ionic conductivity by the addition of zwitterion ion dissociators for flexible supercapacitor[J]. Polymer Engineering & Science, 2021, 61(1):154-166 [36] VOROBIOV V K, SMIRNOV M A, BOBROVA N V, et al. Chitosan-supported deep eutectic solvent as bio-based electrolyte for flexible supercapacitor[J]. Materials Letters, 2021, doi:10.1016/j.matlet.2020.128889 [37] HONG S, YUAN Y, LI P, et al. Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent[J]. Industrial Crops and Products, 2020, doi:10.1016/j.indcrop.2020.112677 [38] KAVAN L. Electrochemistry and dye-sensitized solar cells[J]. Current Opinion in Electrochemistry, 2017, 2(1):88-96 [39] YANG Y, ZHANG Z, GAO J, et al. Deep eutectic solvent based polymer electrolyte for dye-sensitized solar cells[J]. Journal of Inorganic Materials, 2017, doi:10.15541/jim20160184 [40] HEYDARI D M, MOHAMMADPOUR F, ZOLGHADR A R. Dye-sensitized solar cells based on deep eutectic solvent electrolytes:Insights from experiment and simulation[J]. The Journal of Physical Chemistry C, 2021, 125(28):15155-15165 [41] CAI G, WANG J, LEE P S. Next-generation multifunctional electrochromic devices[J]. Accounts of Chemical Research, 2016, 49(8):1469-1476 [42] WANG K, WANG H, LI J, et al. Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast in situ adhesion and flexible electrochromic behaviour[J]. Materials Horizons, 2021, 8(9):2520-2532 [43] RONG K, ZHANG H, ZHANG H, et al. Deep eutectic solvent with Prussian blue and tungsten oxide for green and low-cost electrochromic devices[J]. ACS Applied Electronic Materials, 2019, 1(6):1038-1045 [44] DA SILVA W, BRETT C M A. Novel biosensor for acetylcholine based on acetylcholinesterase/poly(neutral red)-Deep eutectic solvent/Fe2O3 nanoparticle modified electrode[J]. Journal of Electroanalytical Chemistry, 2020, doi:10.1016/j.jelechem.2020.114050 [45] DA SILVA W, GHICA M E, BRETT C M A. Choline oxidase inhibition biosensor based on poly(brilliant cresyl blue)-deep eutectic solvent/carbon nanotube modified electrode for dichlorvos organophosphorus pesticide[J]. Sensors and Actuators B:Chemical, 2019, doi:10.1016/j.snb.2019.126862 [46] YANG D, ZHANG S, JIANG D. Efficient absorption of SO2 by deep eutectic solvents formed by biobased aprotic organic compound succinonitrile and 1-ethyl-3-methylimidazolium chloride[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10):9086-9091 [47] ZHANG Y, YU T, PENG L, et al. Advancements in hydrogel-based drug sustained release systems for bone tissue engineering[J]. Frontiers in Pharmacology, 2020, doi:10.3389/fphar.2020.00622 [48] PRASAD K, MONDAL D, SHARMA M, et al. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents[J]. Carbohydrate Polymers, 2018, 180:328-336 [49] BALL P. Extreme gels[J]. Nature Materials, 2018, doi:10.1038/s41563-018-0163-9 [50] LEMAOUI T, BENGUERBA Y, DARWISH A S, et al. Simultaneous dearomatization, desulfurization, and denitrogenation of diesel fuels using acidic deep eutectic solvents as extractive agents:A parametric study[J]. Separation and Purification Technology, 2021, doi:10.1016/j.seppur.2020.117861 [51] LI R, ZHANG K, CHEN G, et al. Green polymerizable deep eutectic solvent (PDES) type conductive paper for origami 3D circuits[J]. Chemical Communications (Cambridge, England), 2018, 54(18):2304-2307 [52] ADAMS D J. Scrolling for gels[J]. Chem, 2017, 3(4):529-531 [53] CUNHA S C, FERNANDES J O. Extraction techniques with deep eutectic solvents[J]. TrAC Trends in Analytical Chemistry, 2018, 105:225-239 [54] CAI T, QIU H. Application of deep eutectic solvents in chromatography:A review[J]. TrAC Trends in Analytical Chemistry, 2019, doi:10.1016/j.trac.2019.115623 [55] VELEZ C, ACEVEDO O. Simulation of deep eutectic solvents:Progress to promises[J]. WIREs Computational Molecular Science, 2022, doi:10.1002/wcms.1598 [56] TOMÉ L I N, BAIÃO V, DA SILVA W, et al. Deep eutectic solvents for the production and application of new materials[J]. Applied Materials Today, 2018, 10:30-50
|