[1] SÁNCHEZ M A, TORRES G C, MAZZIERI V A, et al. Selective hydrogenation of fatty acids and methyl esters of fatty acids to obtain fatty alcohols-A review[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(1): 27-42
[2] BEHR A, WESTFECHTEL A, PÉREZ GOMES J. Catalytic processes for the technical use of natural fats and oils[J]. Chemical Engineering & Technology, 2008, 31(5): 700-714
[3] SÁNCHEZ M A, MAZZIERI V A, VICERICH M A, et al. Influence of the support material on the activity and selectivity of Ru-Sn-B catalysts for the selective hydrogenation of methyl oleate[J]. Industrial & Engineering Chemistry Research, 2015, 54(27): 6845-6854
[4] 耿尧辰, 赵玉军, 王胜平, 等. 热稳定性增强的铈改性Cu/SiO2催化剂及在草酸酯加氢制乙二醇反应中的应用[J]. 化学工业与工程, 2015, 32(6): 1-612, 12 GENG Yaochen, ZHAO Yujun, WANG Shengping, et al. Ceria-modified Cu/SiO2 catalyst with enhanced thermal stability and its application in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chemical Industry and Engineering, 2015, 32(6): 1-612, 12(in Chinese)
[5] YAO Y, WU X, CHEN B, et al. Copper-based catalysts confined in carbon nanocage reactors for condensed ester hydrogenation: Tuning copper species by confined SiO2 and methanol resistance[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16270-16280
[6] CHURCH J M, ABDEL-GELIL M A. Catalytic hydrogenation of methyl laurate to lauryl alcohol[J]. Industrial & Engineering Chemistry, 1957, 49(5): 813-817
[7] ZHAO Y, WU X, ZHOU J, et al. MOF-derived Cu@C catalyst for the liquid-phase hydrogenation of esters[J]. Chemistry Letters, 2018, 47(7): 883-886
[8] WANG Y, ZHAO Y, LV J, et al. Facile synthesis of Cu@CeO2 and its catalytic behavior for the hydrogenation of methyl acetate to ethanol[J]. ChemCatChem, 2017, 9(12): 2085-2090
[9] YAO Y, WU X, GUTIÉRREZ O Y, et al. Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@C catalysts[J]. Applied Catalysis B: Environmental, 2020, 267: 118698
[10] 杨文龙, 赵玉军, 王胜平, 等. 铜硅催化剂中层状硅酸铜的形成过程[J]. 化学工业与工程, 2016, 33(1):1-5 YANG Wenlong, ZHAO Yujun, WANG Shengping, et al. Formation of copper phyllosilicate in silica supported copper catalyst[J]. Chemical Industry and Engineering, 2016, 33(1): 1-5(in Chinese)
[11] WEN C, LI F, CUI Y, et al. Investigation of the structural evolution and catalytic performance of the CuZnAl catalysts in the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Catalysis Today, 2014, 233: 117-126
[12] 廖俊宇, 赵玉军, 王胜平, 等. 载体极化率对乙酸甲酯加氢Cu/ZnO催化剂的作用机制研究[J]. 化学工业与工程, 2017, 34(6):11-17 LIAO Junyu, ZHAO Yujun, WANG Shengping, et al. Roles of the support polarity ratio on Cu/ZnO catalysts for methyl acetate hydrogenation[J]. Chemical Industry and Engineering, 2017, 34(6): 11-17(in Chinese)
[13] HE L, CHENG H, LIANG G, et al. Effect of structure of CuO/ZnO/Al2O3 composites on catalytic performance for hydrogenation of fatty acid ester[J]. Applied Catalysis A: General, 2013, 452: 88-93
[14] HUANG H, CAO G, FAN C, et al. Effect of water on Cu/Zn catalyst for hydrogenation of fatty methyl ester to fatty alcohol[J]. Korean Journal of Chemical Engineering, 2009, 26(6): 1574-1579
[15] YUAN P, LIU Z, ZHANG W, et al. Cu-Zn/Al2O3 catalyst for the hydrogenation of esters to alcohols[J]. Chinese Journal of Catalysis, 2010, 31(7): 769-775
[16] SHAO Y, SUN K, LI Q, et al. Copper-based catalysts with tunable acidic and basic sites for the selective conversion of levulinic acid/ester to γ-valerolactone or 1, 4-pentanediol[J]. Green Chemistry, 2019, 21(16): 4499-4511
[17] SINGH R, TRIPATHI K, PANT K K, et al. Unravelling synergetic interaction over tandem Cu-ZnO-ZrO2/hierarchical ZSM5 catalyst for CO2 hydrogenation to methanol and DME[J]. Fuel, 2022, 318: 123641
[18] LIU Q, ZHAO Z, ARAI M, et al. Transformation of γ-valerolactone into 1,4-pentanediol and 2-methyltetrahydrofuran over Zn-promoted Cu/Al2O3 catalysts[J]. Catal Sci Technol, 2020, 10(13): 4412-4423
[19] TISSERAUD C, COMMINGES C, BELIN T, et al. The Cu-ZnO synergy in methanol synthesis from CO2, Part 2: Origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on Cu-ZnO coprecipitate catalysts[J]. Journal of Catalysis, 2015, 330: 533-544
[20] NGUYEN HOANG T T, TSAI D H. Low-temperature methanol synthesis via (CO2+CO) combined hydrogenation using Cu-ZnO/Al2O3 hybrid nanoparticle cluster[J]. Applied Catalysis A: General, 2022, 645: 118844
[21] HAN C, ZHANG H, LI C, et al. The regulation of Cu-ZnO interface by Cu-Zn bimetallic metal organic framework-templated strategy for enhanced CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2022, 643: 118805
[22] YU J, CHEN G, GUO Q, et al. Ultrasmall bimetallic Cu/ZnOx nanoparticles encapsulated in UiO-66 by deposition-precipitation method for CO2 hydrogenation to methanol[J]. Fuel, 2022, 324: 124694
[23] YAO D, WANG Y, LI Y, et al. A high-performance nanoreactor for carbon-oxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres[J]. ACS Catalysis, 2018, 8(2): 1218-1226
[24] CHEN L, GUO P, QIAO M, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180
[25] ZHAO Y, GUO Z, ZHANG H, et al. Hydrogenation of diesters on copper catalyst anchored on ordered hierarchical porous silica: Pore size effect [J]. Journal of Catalysis, 2018, 357: 223-237
[26] CHARY K V R, SAGAR G V, SRIKANTH C S, et al. Characterization and catalytic functionalities of copper oxide catalysts supported on zirconia[J]. The Journal of Physical Chemistry B, 2007, 111(3): 543-550
[27] JIA P, LIU Y, YANG R, et al. Insight into the structural sensitivity of CuZnAl catalysts for CO hydrogenation to alcohols[J]. Fuel, 2022, 323: 124265
[28] KANAI Y, WATANABE T, FUJITANI T, et al. Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst[J]. Catalysis Letters, 1994, 27(1): 67-78
[29] WU L, LI L, LI B, et al. Selective conversion of coconut oil to fatty alcohols in methanol over a hydrothermally prepared Cu/SiO2 catalyst without extraneous hydrogen[J]. Chemical Communications, 2017, 53(45): 6152-6155
[30] HUANG H, WANG S, WANG S, et al. Deactivation mechanism of Cu/Zn catalyst poisoned by organic chlorides in hydrogenation of fatty methyl ester to fatty alcohol[J]. Catalysis Letters, 2010, 134(3): 351-357
[31] REN D, WAN X, JIN F, et al. Selective hydrogenation of levulinate esters to 1, 4-pentanediol using a ternary skeletal CuAlZn catalyst[J]. Green Chemistry, 2016, 18(22): 5999-6003
|