[1] REN M, ZHANG Y, WANG X, et al. Catalytic hydrogenation of CO2 to methanol: A review[J]. Catalysts, 2022, 12(4): 403
[2] WANG W, HIMEDA Y, MUCKERMAN J T, et al. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction[J]. Chemical Reviews, 2015, 115(23): 12936-12973
[3] TADA S, KAYAMORI S, HONMA T, et al. Design of interfacial sites between Cu and amorphous ZrO2 dedicated to CO2-to-methanol hydrogenation[J]. ACS Catalysis, 2018, 8(9): 7809-7819
[4] YU J, YANG M, ZHANG J, et al. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol[J]. ACS Catalysis, 2020, 10(24): 14694-14706
[5] ZHANG M, WU Y, DOU M, et al. A DFT study of methanol synthesis from CO2 hydrogenation on the Pd(111) surface[J]. Catalysis Letters, 2018, 148(9): 2935-2944
[6] DÍEZ-RAMÍREZ J, VALVERDE J L, SÁNCHEZ P, et al. CO2 hydrogenation to methanol at atmospheric pressure: Influence of the preparation method of Pd/ZnO catalysts[J]. Catalysis Letters, 2016, 146(2): 373-382
[7] KATTEL S, RAMÍREZ P J, CHEN J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299
[8] SUN Y, CHEN L, BAO Y, et al. Roles of nitrogen species on nitrogen-doped CNTs supported Cu-ZrO2 system for carbon dioxide hydrogenation to methanol[J]. Catalysis Today, 2018, 307: 212-223
[9] DIN I U, SHAHARUN M S, ALOTAIBI M A, et al. Recent developments on heterogeneous catalytic CO2 reduction to methanol[J]. Journal of CO2 Utilization, 2019, 34: 20-33
[10] BECK A, NEWTON M A, VAN DE WATER L G A, et al. The enigma of methanol synthesis by Cu/ZnO/Al2O3-based catalysts[J]. Chemical Reviews, 2024, 124(8): 4543-4678
[11] LI M, MY PHAM T H, KO Y, et al. Support-dependent Cu-In bimetallic catalysts for tailoring the activity of reverse water gas shift reaction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(4): 1524-1535
[12] JUDITH G A, MIRIAM G C, ELENA S M, et al. Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction[J]. Renewable Energy, 2022, 182: 443-451
[13] YANG Y, SHEN C, SUN K, et al. Enhanced surface charge localization over nitrogen-doped In2O3 for CO2 hydrogenation to methanol with improved stability[J]. ACS Catalysis, 2023, 13(9): 6154-6168
[14] LIU L, MEZARI B, KOSINOV N, et al. Al promotion of In2O3 for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2023, 13(24): 15730-15745
[15] JIA X, SUN K, WANG J, et al. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. Journal of Energy Chemistry, 2020, 50: 409-415
[16] BOKUNIAEVA A O, VOROKH A S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder[J]. Journal of Physics: Conference Series, 2019, 1410(1): 012057
[17] LIN D, ZHANG Z, CHEN Y, et al. The Co-In2O3 interaction concerning the effect of amorphous Co metal on CO2 hydrogenation to methanol[J]. Journal of CO2 Utilization, 2022, 65: 102209
[18] 杨菲菲, 赵世熙, 周维, 等. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374 YANG Feifei, ZHAO Shixi, ZHOU Wei, et al. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol[J]. CIESC Journal, 2023, 74(8): 3366-3374(in Chinese)
[19] XIE F, XU S, DENG L, et al. CO2 hydrogenation on Co/CeO2-δ catalyst: morphology effect from CeO2 support[J]. International Journal of Hydrogen Energy, 2020, 45(51): 26938-26952
[20] GAO P, LI F, ZHAO N, et al. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2013, 468: 442-452
[21] WANG S, YANG J, WANG S, et al. Effect of Cu and Zn on the performance of Cu-Mn-Zn/ZrO2 catalysts for CO2 hydrogenation to methanol[J]. Fuel Processing Technology, 2023, 247: 107789
[22] GUAN L, HUANG C, HAN D, et al. HZSM-5 zeolite cross-linked with ultrathin siliceous layer for intensifying catalytic cracking and diffusion of n-butane[J]. Fuel, 2022, 315: 123252
[23] ZHANG G, LIU M, FAN G, et al. Efficient role of nanosheet-like Pr2O3 induced surface-interface synergistic structures over Cu-based catalysts for enhanced methanol production from CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2768-2781
[24] ZHAO H, YU R, MA S, et al. The role of Cu1-O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation[J]. Nature Catalysis, 2022, 5: 818-831
[25] WU Y, XU K, TIAN J, et al. Construction of Ni/In2O3 integrated nanocatalysts based on MIL-68(In) precursors for efficient CO2 hydrogenation to methanol[J]. ACS Applied Materials & Interfaces, 2024, 16(13): 16186-16202
[26] LEE K, YAN H, SUN Q, et al. Mechanism-guided catalyst design for CO2 hydrogenation to formate and methanol[J]. Accounts of Materials Research, 2023, 4(9): 746-757
|