[1] ZHANG L, ZHOU M, WANG A, et al. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms[J]. Chemical Reviews, 2020, 120(2): 683-733
[2] ALBANI D, SHAHROKHI M, CHEN Z, et al. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation[J]. Nature Communications, 2018, 9: 2634
[3] BOITIAUX J P, COSYNS J, VASUDEVAN S. Hydrogenation of highly unsaturated hydrocarbons over highly dispersed palladium catalyst[J]. Applied Catalysis, 1983, 6(1): 41-51
[4] BOITIAUX J P, COSYNS J, VASUDEVAN S. Hydrogenation of highly unsaturated hydrocarbons over highly dispersed Pd catalyst[J]. Applied Catalysis, 1985, 15(2): 317-326
[5] WANG Z, LUO Q, MAO S, et al. Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts[J]. Nano Research, 2022, 15(12): 10044-10062
[6] MCNEICE P, MVLLER M A, MEDLOCK J, et al. Designing a green replacement for the lindlar catalyst for alkyne semi-hydrogenation using silica-supported nickel nanoparticles modified by N-doped carbon[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(30): 9787-9797
[7] NOGAMI S, SHIDA N, IGUCHI S, et al. Mechanistic insights into the electrocatalytic hydrogenation of alkynes on Pt-Pd electrocatalysts in a proton-exchange membrane reactor[J]. ACS Catalysis, 2022, 12(9): 5430-5440
[8] SANKAR M, HE Q, MORAD M, et al. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method[J]. ACS Nano, 2012, 6(8): 6600-6613
[9] VILÉ G, ALBANI D, ALMORA-BARRIOS N, et al. Advances in the design of nanostructured catalysts for selective hydrogenation[J]. ChemCatChem, 2016, 8(1): 21-33
[10] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3: 634-641
[11] MEHRABADI B A T, ESKANDARI S, KHAN U, et al. A review of preparation methods for supported metal catalysts[M]//Advances in Catalysis. Amsterdam: Elsevier, 2017: 1-35
[12] BLASER H U, MALAN C, PUGIN B, et al. Selective hydrogenation for fine chemicals: Recent trends and new developments[J]. Advanced Synthesis & Catalysis, 2003, 345(1/2): 103-151
[13] WU Q, SHEN C, LIU C. Amino acid (histidine) modified Pd/SiO2 catalyst with high activity for selective hydrogenation of acetylene[J]. Applied Surface Science, 2023, 607: 154976
[14] ZOU S, LOU B, YANG K, et al. Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation[J]. Nature Communications, 2021, 12: 5770
[15] JIANG X, TANG L, DONG L, et al. Cu single-atom catalysts for high-selectivity electrocatalytic acetylene semihydrogenation[J]. Angewandte Chemie (International Ed in English), 2023, 62(33): e202307848
[16] TANG J, JIA K, ZHANG R, et al. Selective hydrogenation of alkyne by atomically precise Pd6 nanocluster catalysts: Accurate construction of the coplanar and specific active sites[J]. ACS Catalysis, 2024, 14(4): 2463-2472
[17] CHEN M, KOU J, MA H, et al. Acceleration of the semi-hydrogenation of alkynes over an N-doped porous carbon sphere-confined ultrafine PdCu bimetallic nanoparticle catalyst[J]. Physical Chemistry Chemical Physics: PCCP, 2023, 25(5): 4201-4210
[18] MA J, XING F, SHIMIZU K I, et al. Active site tuning based on pseudo-binary alloys for low-temperature acetylene semihydrogenation[J]. Chemical Science, 2024, 15(11): 4086-4094
[19] SONG J, CAI X, CHEN Z, et al. Expedient alkyne semi-hydrogenation by using a bimetallic AgCu-C3N4 single atom catalyst[J]. Chemical Science, 2024, 15(27): 10577-10584
[20] LI S, LI J, WANG X, et al. Energizing co active sites via d-band center engineering in CeO2-Co3O4 heterostructures: Interfacial charge transfer enabling efficient nitrate electrosynthesis[J]. Small, 2024, 20(27): 2311124
[21] LI J J, GUO Y, CHANG S, et al. Pairing d-band center of metal sites with π-orbital of alkynes for efficient electrocatalytic alkyne semi-hydrogenation[J]. Small, 2023, 19(5): 2205845
[22] BOLARINWA AYODELE O, VINATI S, BARBORINI E, et al. Selectivity boost in partial hydrogenation of acetylene via atomic dispersion of platinum over ceria[J]. Catalysis Science & Technology, 2020, 10(22): 7471-7475
[23] XIN H, VOJVODIC A, VOSS J, et al. Effects of d-band shape on the surface reactivity of transition-metal alloys[J]. Physical Review B, 2014, 89(11): 115114
[24] YU T, DING R, QUAN F, et al. Ag improves the performance of the oxygen evolution reaction by lowering the D-band center of the active site Ni[J]. International Journal of Hydrogen Energy, 2024, 51: 935-944
[25] WANG L, TIAN W, ZHANG W, et al. Boosting oxygen electrocatalytic performance of Cu atom by engineering the d-band center via secondary heteroatomic phosphorus modulation[J]. Applied Catalysis B: Environmental, 2023, 338: 123043
[26] SONG Z, CHENG C, WANG C, et al. Interstitial modification of palladium nanocubes with nitrogen atoms promotes aqueous electrocatalytic alkyne semihydrogenation[J]. ACS Materials Letters, 2023, 5(11): 3068-3073
[27] MAO S, ZHAO B, WANG Z, et al. Tuning the catalytic performance for the semi-hydrogenation of alkynols by selectively poisoning the active sites of Pd catalysts[J]. Green Chemistry, 2019, 21(15): 4143-4151
[28] WANG Y, ZHANG Y, WANG B, et al. The influence of spatial scale of active sites on the catalytic performance: Probing into C2H2 semi-hydrogenation on the Cu and S-modified Cu catalysts[J]. Fuel, 2022, 315: 123180
[29] LI Z, JI S, LIU Y, et al. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites[J]. Chemical Reviews, 2020, 120(2): 623-682
[30] GUO Y, WANG M, ZHU Q, et al. Ensemble effect for single-atom, small cluster and nanoparticle catalysts[J]. Nature Catalysis, 2022, 5: 766-776
[31] YANG B, LIU K, MA Y, et al. Incorporation of Pd single-atom sites in perovskite with an excellent selectivity toward photocatalytic semihydrogenation of alkynes[J]. Angewandte Chemie (International Ed in English), 2024: e202410394
[32] KUO C, LU Y, KOVARIK L, et al. Structure sensitivity of acetylene semi-hydrogenation on Pt single atoms and subnanometer clusters[J]. ACS Catalysis, 2019, 9(12): 11030-11041
[33] CHEN Z, CHEN Y, SHI L, et al. Directional construction of the highly stable active-site ensembles at sub-2 nm to enhance catalytic activity and selectivity[J]. Advanced Materials, 2024, 36(35): e2405733
[34] GAO R, XU J, WANG J, et al. Pd/Fe2O3 with electronic coupling single-site Pd-Fe pair sites for low-temperature semihydrogenation of alkynes[J]. Journal of the American Chemical Society, 2022, 144(1): 573-581
[35] LI J, SUO W, HUANG Y, et al. Mesoporous α-Al2O3-supported PdCu bimetallic nanoparticle catalyst for the selective semi-hydrogenation of alkynes[J]. Journal of Colloid and Interface Science, 2023, 652: 1053-1062
[36] LIU K, QIN R, ZHOU L, et al. Cu2O-supported atomically dispersed Pd catalysts for semihydrogenation of terminal alkynes: Critical role of oxide supports[J]. CCS Chemistry, 2019, 1(2): 207-214
[37] HE Y, FAN J, FENG J, et al. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: Effect of support acidic and basic properties[J]. Journal of Catalysis, 2015, 331: 118-127
[38] PASUPULETY N, DAOUS M A, AL-ZAHRANI A A, et al. Alumina-boron catalysts for oxidative dehydrogenation of ethylbenzene to styrene: Influence of alumina-boron composition and method of preparation on catalysts properties[J]. Chinese Journal of Catalysis, 2019, 40(11): 1758-1765
[39] YANG Z, LI Y, CAO Y, et al. Al2O3 microrods supported Pd catalysts for semi-hydrogenation of acetylene: Acidic properties tuned reaction kinetics behaviors[J]. Chemical Engineering Journal, 2022, 445: 136681
[40] WU Y, LU X, CUI P, et al. Enhancing alkyne semi-hydrogenation through engineering metal-support interactions of Pd on oxides[J]. Nano Research, 2024, 17(5): 3707-3713
[41] XIONG J, MAO S, LUO Q, et al. Mediating trade-off between activity and selectivity in alkynes semi-hydrogenation via a hydrophilic polar layer[J]. Nature Communications, 2024, 15: 1228
[42] YURPALOVA D V, AFONASENKO T N, PROSVIRIN I P, et al. Selective hydrogenation of acetylene over Pd-Co/C catalysts: The modifying effect of cobalt[J]. Catalysts, 2023, 13(4): 739
[43] GLUHOI A C, BAKKER J W, NIEUWENHUYS B E. Gold, still a surprising catalyst: Selective hydrogenation of acetylene to ethylene over Au nanoparticles[J]. Catalysis Today, 2010, 154(1/2): 13-20
[44] TAKETOSHI A, HARUTA M. Size- and structure-specificity in catalysis by gold clusters[J]. Chemistry Letters, 2014, 43(4): 380-387
[45] SONG X, PAN W, SHAO F, et al. Effect of the Al2O3 crystal phase on the supported Pd performance of semihydrogenation alkynes[J]. Industrial & Engineering Chemistry Research, 2023, 62(51): 21942-21949
[46] ZHOU H, LI B, ZHANG Y, et al. Au3+ species boost the catalytic performance of Au/ZnO for the semi-hydrogenation of acetylene[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 40429-40440
[47] BENAVIDEZ A D, BURTON P D, NOGALES J L, et al. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene[J]. Applied Catalysis A: General, 2014, 482: 108-115
[48] MA L, JIANG P, WANG K, et al. Phosphorus and nitrogen-doped palladium nanomaterials support on coral-like carbon materials as the catalyst for semi-hydrogenation of phenylacetylene and mechanism study[J]. Journal of Alloys and Compounds, 2021, 868: 159047
[49] ZONG L, FAN K, WU W, et al. Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction[J]. Advanced Functional Materials, 2021, 31(41): 2104864
[50] LI J, JIAO L, WEGENER E, et al. Evolution pathway from iron compounds to Fe1(II)-N4 sites through gas-phase iron during pyrolysis[J]. Journal of the American Chemical Society, 2020, 142(3): 1417-1423
[51] LI S, YUE G, LI H, et al. Pd single atom stabilized on multiscale porous hollow carbon fibers for phenylacetylene semi-hydrogenation reaction[J]. Chemical Engineering Journal, 2023, 454: 140031
[52] LIU J, JIAO M, MEI B, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction[J]. Angewandte Chemie (International Ed in English), 2019, 58(4): 1163-1167
[53] WANG X, JIA Y, MAO X, et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis[J]. Advanced Materials, 2020, 32(16): e2000966
[54] HUANG F, DENG Y, CHEN Y, et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene[J]. Nature Communications, 2019, 10: 4431
[55] MA M, CHENG X, SHI Z, et al. Role of N in transition-metal-nitrides for anchoring platinum-group metal atoms toward single-atom catalysis[J]. Small Methods, 2022, 6(7): 2200295
[56] LI X, LI X. Efficient electronic state regulation engineering on Pd single atom by the defect engineering of the BN support for acetylene semi-hydrogenation[J]. Molecular Catalysis, 2024, 564: 114324
[57] CHAN C, MAHADI A H, LI M, et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation[J]. Nature Communications, 2014, 5: 5787
[58] BVCHELE S, CHEN Z, FAKO E, et al. Carrier-induced modification of palladium nanoparticles on porous boron nitride for alkyne semi-hydrogenation[J]. Angewandte Chemie (International Ed in English), 2020, 59(44): 19639-19644
[59] ZHAO E, LI M, XU B, et al. Transfer hydrogenation with a carbon-nitride-supported palladium single-atom photocatalyst and water as a proton source[J]. Angewandte Chemie (International Ed in English), 2022, 61(40): e202207410
[60] JIA T, MENG D, DUAN R, et al. Single-atom nickel on carbon nitride photocatalyst achieves semihydrogenation of alkynes with water protons via monovalent nickel[J]. Angewandte Chemie (International Ed in English), 2023, 62(9): e202216511
[61] LI X, PAN Y, YI H, et al. Mott-schottky effect leads to alkyne semihydrogenation over Pd-Nanocube@N-doped carbon[J]. ACS Catalysis, 2019, 9(5): 4632-4641
[62] HU Y, ZHANG S, ZHANG Z, et al. Enhancing photocatalytic-transfer semi-hydrogenation of alkynes over Pd/C3N4 through dual regulation of nitrogen defects and the mott-schottky effect[J]. Advanced Materials, 2023, 35(41): e2304130
[63] LIU L, CORMA A. Confining isolated atoms and clusters in crystalline porous materials forcatalysis[J]. Nature Reviews Materials, 2021, 6: 244-263
[64] GUO Q, WANG Z, FENG X, et al. Generation and stabilization of a dinickel catalyst in a metal-organic framework for selective hydrogenation reactions[J]. Angewandte Chemie, 2023, 135(35): 2306905
[65] SHEN Y, PAN T, WU P, et al. Regulating electronic status of platinum nanoparticles by metal-organic frameworks for selective catalysis[J]. CCS Chemistry, 2021, 3(5): 1607-1614
[66] YANG D, GATES B C. Catalysis by metal organic frameworks: Perspective and suggestions for future research[J]. ACS Catalysis, 2019, 9(3): 1779-1798
[67] GANAI A, SARKAR P. Unraveling the role of single-atom catalysts immobilized onto metal-organic frameworks in selective acetylene hydrogenation: An implementation of the active site isolation strategy[J]. The Journal of Physical Chemistry C, 2024, 128(19): 7913-7925
[68] MANCUSO J L, MROZ A M, LE K, et al. Electronic structure modeling of metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8641-8715
[69] CHEN Y, GAO R, JI S, et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance[J]. Angewandte Chemie (International Ed in English), 2021, 60(6): 3212-3221
[70] HU Y, DAI L, LIU D, et al. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 793-801
[71] CHOE K, ZHENG F, WANG H, et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks[J]. Angewandte Chemie (International Ed in English), 2020, 59(9): 3650-3657
[72] VERMA R, TYAGI R, VOORA V K, et al. Black gold-based "antenna-reactor" to activate non-plasmonic nickel: Photocatalytic hydrodechlorination and hydrogenation reactions[J]. ACS Catalysis, 2023, 13(11): 7395-7406
[73] JIA T, MENG D, JI H, et al. Visible-light-driven semihydrogenation of alkynes via proton reduction over carbon nitride supported nickel[J]. Applied Catalysis B: Environmental, 2022, 304: 121004
[74] HU X, WANG G, QIN C, et al. Ligandless nickel-catalyzed transfer hydrogenation of alkenes and alkynes using water as the hydrogen donor[J]. Organic Chemistry Frontiers, 2019, 6(15): 2619-2623
[75] FOUCHER A C, NGAN H T, SHIRMAN T, et al. Influence of Pd concentration in Au-Pd nanoparticles for the hydrogenation of alkynes[J]. ACS Applied Nano Materials, 2023, 6(24): 22927-22938
[76] ALAMI M, HAMZE A, PROVOT O. Hydrostannation of alkynes[J]. ACS Catalysis, 2019, 9(4): 3437-3466
[77] WANG B, LANTERNA A E, SCAIANO J C. Mechanistic insights on the semihydrogenation of alkynes over different nanostructured photocatalysts[J]. ACS Catalysis, 2021, 11(7): 4230-4238
[78] SHIBUYA M, OKAMOTO M, FUJITA S, et al. Boron-catalyzed double hydrofunctionalization reactions of unactivated alkynes[J]. ACS Catalysis, 2018, 8(5): 4189-4193
[79] KANG Z, WANG Y, LIU B, et al. Experimental study and modeling of the liquid phase hydrogenation of acetylene[J]. Chemical Engineering Journal, 2024, 491: 151755
[80] GLYZDOVA D V, AFONASENKO T N, KHRAMOV E V, et al. Liquid-phase acetylene hydrogenation over Ag-modified Pd/Sibunit catalysts: Effect of Pd to Ag molar ratio[J]. Applied Catalysis A: General, 2020, 600: 117627
[81] ZHU S, LV Z, JIA X, et al. Pd nanoflakes epitaxially grown on defect MoS2 nanosheets for enhanced nitroarenes hydrogenation to anilines[J]. Applied Catalysis B: Environment and Energy, 2024, 351: 123958
[82] ZHU Q, LU X, JI S, et al. Fully exposed cobalt nanoclusters anchored on nitrogen-doped carbon synthesized by a host-guest strategy for semi-hydrogenation of phenylacetylene[J]. Journal of Catalysis, 2022, 405: 499-507
[83] LONG W, BRUNELLI N A, DIDAS S A, et al. Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes[J]. ACS Catalysis, 2013, 3(8): 1700-1708
[84] XING Y, SU Y, LI L, et al. Air-stable and reusable porous silica-supported ultrafine Nix-NiO nanoparticles for semi-hydrogenation of alkynes[J]. Applied Surface Science, 2024, 654: 159411
[85] ZHAO L, QIN X, ZHANG X, et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene[J]. Advanced Materials, 2022, 34(20): e2110455
[86] ZHANG L, LIN J, LIU Z, et al. Non-noble metal-based catalysts for acetylene semihydrogenation: From thermocatalysis to sustainable catalysis[J]. Science China Chemistry, 2023, 66(7): 1963-1974
[87] LI N, WENG S, MCCUE A J, et al. Metal-organic framework-derived Ni-S/C catalysts for selective alkyne hydrogenation[J]. ACS Applied Materials & Interfaces, 2023, 15(41): 48135-48146
[88] XU J, HUANG W, LI R, et al. Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation[J]. Journal of Colloid and Interface Science, 2024, 655: 584-593
[89] HUANG R, XIA M, ZHANG Y, et al. Acetylene hydrogenation to ethylene by water at low temperature on a Au/α-MoC catalyst[J]. Nature Catalysis, 2023, 6: 1005-1015
[90] LI Z, ZHANG J, TIAN J, et al. Decoupling active sites enables low-temperature semihydrogenation of acetylene[J]. ACS Catalysis, 2024, 14(3): 1514-1524
[91] ZHAO Y, BOZKURT Ö D, KURTO?LU-ÖZTULUM S F, et al. Atomically dispersed zeolite-supported rhodium complex: Selective and stable catalyst for acetylene semi-hydrogenation[J]. Journal of Catalysis, 2024, 429: 115196
[92] LV J, WANG D, GUO X, et al. Selective hydrogenation of phenylacetylene over high-energy facets exposed nanotubular alumina supported palladium catalysts[J]. Catalysis Communications, 2023, 181: 106715
[93] DELIMA R S, STANKOVIC M D, MACLEOD B P, et al. Selective hydrogenation of furfural using a membrane reactor[J]. Energy & Environmental Science, 2022, 15(1): 215-224
[94] WAN Q, ZHANG J, LIU X, et al. Metal-support interaction triggered d-p orbital hybridization for efficient electrocatalytic semi-hydrogenation of alkynes[J]. Journal of Materials Chemistry A, 2024, 12(19): 11625-11634
[95] LIN X, HU F, LI Q, et al. Electron divergence of Cuδ- and Pdδ+ in Cu3Pd alloy-based heterojunctions boosts concerted C≡C bond binding and the Volmer step for alkynol semihydrogenation[J]. Journal of the American Chemical Society, 2024, 146(27): 18451-18458
[96] WANG G, LI Y, ZHU W, et al. Efficient electrocatalytic alkyne semi-hydrogenation and deuteration using Pd/PANI catalysts supported on nickel foam[J]. Chemical Engineering Journal, 2024, 489: 151271
[97] TAN Q, LI L, LI Y, et al. Tandem electrocatalytic alkyne semihydrogenation over bicomponent catalysts through hydrogen spillover[J]. Angewandte Chemie (International Ed in English), 2024, 63(15): e202400483
[98] LING Y, WU Y, WANG C, et al. Selenium vacancy promotes transfer semihydrogenation of alkynes from water electrolysis[J]. ACS Catalysis, 2021, 11(15): 9471-9478
[99] LUO D, XIE Z, CHEN S, et al. Enhancing electrocatalytic semihydrogenation of alkynes via weakening alkene adsorption over electron-depleted Cu nanowires[J]. ACS Nanoscience Au, 2024, doi: 10.1021/acsnanoscienceau.4c00030
[100] REN Q, HAO L, YANG J, et al. Promoting electrocatalytic semihydrogenation of alkynols to alkenols over a bimetallic CuAu alloy catalyst[J]. ACS Catalysis, 2024, 14(8): 5675-5684
[101] LIN X, LI Q, XIA S, et al. Enrichment of polarized alkynes over negatively charged Pt for efficient electrocatalytic semihydrogenation[J]. ACS Catalysis, 2024, 14(4): 2173-2180
[102] CHEN F, LI L, CHENG C, et al. Ethylene electrosynthesis from low-concentrated acetylene via concave-surface enriched reactant and improved mass transfer[J]. Nature Communications, 2024, 15: 5914
[103] WANG Z, LI C, PENG G, et al. Highly selective acetylene-to-ethylene electroreduction over Cd-decorated Cu catalyst with efficiently inhibited carbon-carbon coupling[J]. Angewandte Chemie (International Ed in English), 2024, 63(19): e202400122
[104] SONG X, SHAO F, ZHAO Z, et al. Single-atom Ni-modified Al2O3-supported Pd for mild-temperature semi-hydrogenation of alkynes[J]. ACS Catalysis, 2022, 12(24): 14846-14855
[105] LI M, ZHANG N, LONG R, et al. PdPt alloy nanocatalysts supported on TiO2: Maneuvering metal-hydrogen interactions for light-driven and water-donating selective alkyne semihydrogenation[J]. Small, 2017, 13(23): 1604173
[106] YU H, XING J, CHEN Z, et al. Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters[J]. Nature Communications, 2013, 4: 2500
[107] SU K, WANG Y, ZHANG C, et al. Tuning the Pt species on Nb2O5 by support-induced modification in the photocatalytic transfer hydrogenation of phenylacetylene[J]. Applied Catalysis B: Environmental, 2021, 298: 120554
[108] WANG Z, WANG H, SHI Y, et al. CuPd alloy decorated SnNb2O6 nanosheets as a multifunctional photocatalyst for semihydrogenation of phenylacetylene under visible light[J]. Chemical Engineering Journal, 2022, 429: 132018
[109] LI X, WANG R, ZHANG J, et al. Selective hydrogenation of phenylacetylene over TiO2 supported Ni2P nanoparticles under visible light irradiation[J]. Catalysis Science & Technology, 2023, 13(22): 6519-6526
[110] LIAN J, CHAI Y, QI Y, et al. Unexpectedly selective hydrogenation of phenylacetylene to styrene on titania supported platinum photocatalyst under 385 nm monochromatic light irradiation[J]. Chinese Journal of Catalysis, 2020, 41(4): 598-603
[111] TAN C, CAO X, WU X, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331
[112] ZHANG S, GUO S, CHEN Z, et al. Recent progress in 2D group-VA semiconductors: From theory to experiment[J]. Chemical Society Reviews, 2018, 47(3): 982-1021
[113] MATEO D, MORLANES N, MAITY P, et al. Efficient visible-light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on Barium titanate[J]. Advanced Functional Materials, 2021, 31(8): 2008244
[114] WANG J, WANG M, LI X, et al. Bidentate ligand modification strategy on supported Ni nanoparticles for photocatalytic selective hydrogenation of alkynes[J]. Applied Catalysis B: Environmental, 2022, 313: 121449
[115] GUO Y, HUANG Y, ZENG B, et al. Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst[J]. Nature Communications, 2022, 13: 2648
|