[1] Oehmen A, Zeng R J, Yuan Z, et al. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechnology & Bioengineering, 2005, 91(1):43-53
[2] Zhou Y, Ganda L, Lim M, et al. Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs)[J]. Applied Microbiology & Biotechnology, 2010, 88(1):359-369
[3] Zhou Y, Ganda L, Lim M, et al. Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions[J]. Bioresource Technology, 2012, 116(7):340-347
[4] He S, Gall D L, Mcmahon K D. "Candidatus Accumulibacter" population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes[J]. Applied & Environmental Microbiology, 2007, 73(18):5865-5874
[5] Mcmahon K D, Yilmaz S, He S, et al. Polyphosphate kinase genes from full-scale activated sludge plants[J]. Applied Microbiology & Biotechnology, 2007, 77(1):167-173
[6] Peterson S B, Warnecke F, Madejska J, et al. Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal[J]. Environmental Microbiology, 2008, 10(10):2692-2703
[7] Mao Y, Graham D W, Tamaki H, et al. Dominant and novel clades of Candidatus Accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants[J]. Scientific Reports, 2015, doi:10.1038/srep11857
[8] Flowers J J, He S, Yilmaz S, et al. Denitrification capabilities of two biological phosphorus removal sludges dominated by different "Candidatus Accumulibacter" clades[J]. Environmental Microbiology Reports, 2009, 1(6):583-588
[9] Kim J M, Lee H J, Lee D S, et al. Characterization of the denitrification-associated phosphorus uptake properties of "Candidatus Accumulibacter phosphatis" clades in sludge subjected to enhanced biological phosphorus removal[J]. Applied & Environmental Microbiology, 2013, 79(6):1969-1979
[10] Zou H, Lu X, Abualhail S, et al. Enrichment of PAO and DPAO responsible for phosphorus removal at low temperature[J]. Environment Protection Engineering, 2014, 40(1):67-83
[11] 王亚东,王少坡,郑莎莎,等.生物除磷系统的聚磷微生物种群及其检测方法[J]. 环境工程, 2015, 33(2):21-26 Wang Yadong, Wang Shaopo, Zheng Shasha, et al. Poly-P accumulating microorganisms and identifyingmethods for biological phosphorus removal system[J]. Environmental Engineering, 2015, 33(2):21-26(in Chinese)
[12] Lopez-Vazquez C M, Hooijmans C M, Brdjanovic D, et al. Temperature effects on glycogen accumulating organisms[J]. Water Research, 2009, 43(11):2852-2864
[13] Lopez-Vazquez C M, Oehmen A, Hooijmans C M, et al. Modeling the PAO-GAO competition:Effects of carbon source, pH and temperature[J]. Water Research, 2009, 43(2):462, doi:10.1016/j.watres.2008.10.032
[14] 吉茸,王少坡,赵乐丹,等. 聚磷菌Accumulibacter各进化枝研究进展[J].工业水处理, 2017, 37(1):7-11 Ji Rong, Wang Shaopo, Zhao Ledan, et al. Research progress on various clades of Accumulibacter of phosphorus accumu-lating organisms[J]. Industrial Water Treatment, 2017, 37(1):7-11(in Chinese)
[15] Carvalho G, Lemos P C, Oehmen A, et al. Denitrifying phosphorus removal:Linking the process performance with the microbial community structure[J]. Water Research, 2007, 41(19):4383-4396
[16] Slater F R, Johnson C R, Blackall L L, et al. Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP)[J]. Water Research, 2010, 44(17):4908-4923
[17] Welles L, Tian W, Saad S, et al. Accumulibacter, clades Type I and Ⅱ performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake[J]. Water Research, 2015, 83:354-366
[18] Mao Y, Wang Z, Li L, et al. Exploring the shift in structure and function of microbial communities performing biological phosphorus removal[J]. Plos One, 2016, 11(8):e0161506, doi:10.1371/journal.pone.0161506
[19] 俞苗新,潘杨,陈晓杰,等. 强化生物除磷过程中厌氧合成PHA代谢机制的最新研究进展[J]. 安全与环境工程, 2013, 20(4):55-61 Yu Miaoxin, Pan Yang, Chen Xiaojie, et al. Latest research progress of the Metabolic mechanism of the anaerobic synthesis of PHA in the process of EBPR[J]. Safety and Environmental Engineering, 2013, 20(4):55-61(in Chinese)
[20] Saad S A, Welles L, Abbas B, et al. Denitrification of nitrate and nitrite by ‘Candidatus, Accumulibacter phosphatis’ clade IC[J]. Water Research, 2016, 105:97-109
[21] Camejo P Y, Owen B R, Martirano J, et al. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors[J]. Water Research, 2016, 102:125-137
[22] Tian W, Ma C, Lin Y, et al. Enrichment and characterization of a psychrophilic ‘Candidatus, Accumulibacter phosphatis’ culture[J]. International Biodeterioration & Biodegradation, 2017, 124:267-275
[23] 吉茸,王少坡,赵乐丹, 等. 碳源类型对AOA-SBR系统的除磷特性和菌群组成的影响[J]. 高技术通讯, 2017, 27(4):381-388 Ji Rong, Wang Shaopo, Zhao Ledan, et al. Effects of carbon sources on phosphorus removal characteristics of anaerobic-oxic-anoxic(AOA)-SBR systems[J]. High Technology Letters, 2017, 27(4):381-388(in Chinese)
[24] Shen N, Zhou Y. Enhanced biological phosphorus removal with different carbon sources[J]. Applied Microbiology & Biotechnology, 2016, 100(11):4735-4745
[25] Acevedo B, Oehmen A, Carvalho G, et al. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage[J]. Water Research, 2012, 46(6):1889-1900
[26] Ong Y H, Chua A S, Fukushima T, et al. High-temperature EBPR process:The performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis"[J]. Water Research, 2014, 64:102-112
[27] Tian W, Lopezvazquez C M, Li W, et al. Occurrence of PAO I in a low temperature EBPR system[J]. Chemosphere, 2013, 92(10):1314-1320
[28] Onnishayden A, Majed N, Drury D, et al. Effect of sludge residence time on phosphorus removal activities and populations in enhanced biological phosphorus removal (EBPR) systems[J]. 2013, 2013(19):121-132
[29] Welles L, Abbas B, Sorokin D Y, et al. Metabolic response of "CandidatusAccumulibacter Phosphatis" clade Ⅱ C to changes in influent P/C ratio[J]. Frontiers in Microbiology, 2016, 7(7):2121, doi:10.3389/fmicb.2016.02121
[30] Nurmiyanto A, Kodera H, Kindaichi T, et al. Dominant Candidatus Accumulibacter phosphatis enriched in response to phosphate concentrations in EBPR process[J]. Microbes & Environments, 2017, 32(3):260-267
[31] Welles L, Lopez-Vazquez C M, Hooijmans C M, et al. Prevalence of ‘Candidatus, Accumulibacter phosphatis’ type Ⅱ under phosphate limiting conditions[J]. Amb Express, 2016, 6(1):44, doi:10.1186/s13568-016-0214-z
[32] 张丽敏,曾薇,王安其,等. 城市污水处理厂Candidatus Accumulibacter的菌群结构及定量分析[J]. 环境科学学报, 2016, 36(4):1226-1236 Zhang Limin, Zeng Wei, Wang Anqi, et al. Community struc-tures and quantitative analyses of Candidatus Accumuli-bacter in municipal wastewater treatment plants[J]. Acta Scientiae Circumstantiae, 2016, 36(4):1226-1236(in Chinese)
[33] Hu J, Ong S L, Ng W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research, 2003, 37(14):3463-3471
[34] Zeng W, Li L, Yang Y, et al. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater[J]. Enzyme & Microbial Technology, 2011, 48(2):134-142
[35] Lanham A B, Moita R, Lemos P C, et al. Long-Term operation of a reactor enriched in Accumulibacter clade I DPAOs:Performance with nitrate, nitrite and oxygen[J]. Water Science & Technology, 2011, 63(2):352-359
[36] Pan Y, Cheng K Y, Krishna K C B, et al. Improvement of carbon usage for phosphorus recovery in EBPR-r and the shift in microbial community[J]. Journal of Environmental Management, 2018, 218:569-578
[37] García M H, Ivanova N, Kunin V, et al. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities[J]. Nature Biotechnology, 2006, 24(10):1263-1269
[38] Skennerton C T, Barr J J, Slater F R, et al. Expanding our view of genomic diversity in Candidatus Accumulibacter clades[J]. Environmental Microbiology, 2015, 17(5):1574-1585
[39] Zeng W, Bai X, Guo Y, et al. Interaction of "Candidatus Accumulibacter" and nitrifying bacteria to achieve energy-efficient denitrifying phosphorus removal via nitrite pathway from sewage[J]. Enzyme Microb Technol, 2017, 105:1-8
[40] Rubiorincón F J, Lopezvazquez C M, Welles L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120:156-164
[41] 曾薇,李博晓,王向东,等. MUCT短程硝化和反硝化除磷系统中Candidatus Accumulibacter的代谢活性和菌群结构[J]. 中国环境科学, 2013, 33(7):1298-1308 Zeng Wei, Li Boxiao, Wang Xiangdong, et al. Candidatus Accu-mulibacter metabolic activity and population structure in MUCT process treating domestic wastewater with nitritation and denitrifying phosphorus removal[J]. China Environmental Science, 2013, 33(7):1298-1308(in Chinese)
[42] Wang Y, Zhou S, Ye L, et al. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors[J]. Water Research, 2014, 67:33-45
|