[1] GRIMM N B, FAETH S H, GOLUBIEWSKI N E, et al. Global change and the ecology of cities[J]. Science, 2008, 319(5864): 756-760 [2] ÁLVAREZ A, BANSODE A, URAKAWA A, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chemical Reviews, 2017, 117(14): 9804-9838 [3] ZHANG T, XUE Q, SHAN M, et al. Adsorption and catalytic activation of O2 molecule on the surface of Au-doped graphene under an external electric field[J]. The Journal of Physical Chemistry C, 2012, 116(37): 19918-19924 [4] SWAPNESH A, SRIVASTAVA V C, MALL I D. Comparative study on thermodynamic analysis of CO2 utilization reactions[J]. Chemical Engineering & Technology, 2014, 37(10): 1765-1777 [5] BELLER M, BORNSCHEUER U T. CO2 fixation through hydrogenation by chemical or enzymatic methods[J]. Angewandte Chemie International Edition, 2014, 53(18): 4527-4528 [6] 段新平, 林清瑞, 周俊夫, et al. 草酸酯加氢制乙醇酸甲酯高效银基催化剂的研究[C]. 第十五届全国催化学术会议, 2010 [7] ZHOU J, DUAN X, YE L, et al. Enhanced chemoselective hydrogenation of dimethyl oxalate to methyl glycolate over bimetallic Ag-Ni/SBA-15 catalysts[J]. Applied Catalysis A: General, 2015, 505: 344-353 [8] 郭向前, 钱俊峰. 草酸二甲酯催化加氢制备乙醇酸甲酯工艺研究[J]. 广州化工, 2015, 43(18): 91-93 GUO Xiangqian, QIAN Junfeng. Study on the process for catalytic hydrogenation of dimethyl oxalate to methyl glycollate[J]. Guangzhou Chemical Industry, 2015, 43(18): 91-93(in Chinese) [9] YANG X, WANG A, QIAO B, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748 [10] ESRAFILI M D, MOHAMMADIAN-SABET F, NEMATOLLAHI P. Oxidation of CO by N2O over Al-and Ti-doped graphene: A comparative study[J]. RSC Advances, 2016, 6(69): 64832-64840 [11] XU M, WEI M. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications[J]. Advanced Functional Materials, 2018, doi:10.1002/adfm.201802943 [12] BULUSHEV D A, CHUVILIN A L, SOBOLEV V I, et al. Single Au atoms on the surface of N-free and N-doped carbon: Interaction with formic acid and methanol molecules[J]. Topics in Catalysis, 2019, 62(5/6): 508-517 [13] SREDOJEVIĆ D N, ŠLJIVANČANIN Ž, BROTHERS E N, et al. Formic acid synthesis by CO2 hydrogenation over single-atom catalysts based on Ru and Cu embedded in graphene[J]. Chemistry Select, 2018, 3(9): 2631-2637 [14] ESRAFILI M D, DINPARAST L. A DFT study on the catalytic hydrogenation of CO2 to formic acid over Ti-doped graphene nanoflake[J]. Chemical Physics Letters, 2017, 682: 49-54 [15] LI X, RONG H, ZHANG J, et al. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance[J]. Nano Research, 2020, 13(7): 1842-1855 [16] YANG S, ZHI L, TANG K, et al. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions[J]. Advanced Functional Materials, 2012, 22(17): 3634-3640 [17] HAN Y, WANG Y, CHEN W, et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: Superior electrocatalysts for oxygen reduction[J]. Journal of the American Chemical Society, 2017, 139(48): 17269-17272 [18] SUN X, LI K, YIN C, et al. CoN3 embedded graphene, a potential catalyst for the oxygen reduction reaction from a theoretical perspective[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(27): 17670-17676 [19] JIANG K, SIAHROSTAMI S, ZHENG T T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science, 2018, 11(4): 893-903 [20] LI F, HAN G, NOH H J, et al. Boosting oxygen reduction catalysis with abundant copper single atom active sites[J]. Energy & Environmental Science, 2018, 11(8): 2263-2269 [21] GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catalysis, 2011, 1(4): 365-384 [22] SIRIJARAENSRE J, LIMTRAKUL J. Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: A DFT study[J]. Applied Surface Science, 2016, 364: 241-248 [23] GUO X, FANG G, LI G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184): 616-619
|