[1] QASIM M, BADRELZAMAN M, DARWISH N N, et al. Reverse osmosis desalination:A state-of-the-art review[J]. Desalination, 2019, 459:59-104 [2] LIU Y, LIU C, FU X, et al. Armor polyamide reverse osmosis membrane with POSS 'armors' through two-step interfacial polymerization for high anti-chlorine and anti-bacteria performance[J]. Journal of Membrane Science, 2019, 586:211-221 [3] HOSSEINI M, AZAMAT J, ERFAN-NIYA H. Water desalination through fluorine-functionalized nanoporous graphene oxide membranes[J]. Materials Chemistry and Physics, 2019, 223:277-286 [4] LI W, PAN F, SONG Y, et al. Construction of molecule-selective mixed matrix membranes with confined mass transfer structure[J]. Chinese Journal of Chemical Engineering, 2017, 25(11):1563-1580 [5] MANSOURPANAH Y, MOMENI HABILI E. Preparation and modification of thin film PA membranes with improved antifouling property using acrylic acid and UV irradiation[J]. Journal of Membrane Science, 2013, 430:158-166 [6] ZHAN Z, XU Z, ZHU K, et al. How to understand the effects of heat curing conditions on the morphology and performance of polypiperazine-amide NF membrane[J]. Journal of Membrane Science, 2020, doi:10.1016/j.memsci.2019.117640 [7] XU G, XU J, SU H, et al. Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination:Latest developments and future directions[J]. Desalination, 2019, 451:18-34 [8] ZHANG J, QIN Z, YANG L, et al. Activation promoted ionic liquid modification of reverse osmosis membrane towards enhanced permeability for desalination[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80:25-33 [9] SHIN M G, PARK S H, KWON S J, et al. Facile performance enhancement of reverse osmosis membranes via solvent activation with benzyl alcohol[J]. Journal of Membrane Science, 2019, 578:220-229 [10] SAFARPOUR M, KHATAEE A, VATANPOUR V. Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance[J]. Journal of Membrane Science, 2015, 489:43-54 [11] YAN W, SHI M, WANG Z, et al. Confined growth of skin layer for high performance reverse osmosis membrane[J]. Journal of Membrane Science, 2019, 585:208-217 [12] LEE T H, OH J Y, HONG S P, et al. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes:Importance of particle deposition[J]. Journal of Membrane Science, 2019, 570/571:23-33 [13] SHEN H, WANG S, XU H, et al. Preparation of polyamide thin film nanocomposite membranes containing silica nanoparticles via an in situ polymerization of SiCl4 in organic solution[J]. Journal of Membrane Science, 2018, 565:145-156 [14] WU M, YUAN J, WU H, et al. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability[J]. Journal of Membrane Science, 2019, 576:131-141 [15] GONG G, WANG P, ZHOU Z, et al. New insights into the role of an interlayer for the fabrication of highly selective and permeable thin-film composite nanofiltration membrane[J]. ACS Applied Materials & Interfaces, 2019, 11(7):7349-7356 [16] WANG Z, WANG Z, LIN S, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination[J]. Nature Communications, 2018, 9(1):1-9 [17] LI Y, LI C, LI S, et al. Graphene oxide (GO)-interlayered thin-film nanocomposite (TFN) membranes with high solvent resistance for organic solvent nanofiltration (OSN)[J]. Journal of Materials Chemistry A, 2019, 7(21):13315-13330 [18] GAO H, XUE Y, ZHANG Y, et al. Engineering of Ag-nanoparticle-encapsulated intermediate layer by tannic acid-inspired chemistry towards thin film nanocomposite membranes of superior antibiofouling property[J]. Journal of Membrane Science, 2022, doi:10.1016/j.memsci.2021.119922 [19] PENG Y, YANG J, QI H, et al. 2D COFs interlayer manipulated interfacial polymerization for fabricating high performance reverse osmosis membrane[J]. Separation and Purification Technology, 2022, doi:10.1016/j.seppur.2022.122198 [20] LI S, YIN Y, LIU S, et al. Interlayered thin-film nanocomposite membrane with synergetic effect of COFs interlayer and GQDs incorporation for organic solvent nanofiltration[J]. Journal of Membrane Science, 2022, doi:10.1016/j.memsci.2022.120930 [21] LI C, LI S, ZHANG J, et al. Emerging sandwich-like reverse osmosis membrane with interfacial assembled covalent organic frameworks interlayer for highly-efficient desalination[J]. Journal of Membrane Science, 2020, doi:10.1016/j.memsci.2020.118065 [22] WU M, LV Y, YANG H, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J]. Journal of Membrane Science, 2016, 515:238-244 [23] LAI G, LAU W J, GOH P S, et al. Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation[J]. Chemical Engineering Journal, 2018, 344:524-534 [24] LI S, LI C, SU B, et al. Amino-functionalized graphene quantum dots (aGQDs)-embedded thin film nanocomposites for solvent resistant nanofiltration (SRNF) membranes based on covalence interactions[J]. Journal of Membrane Science, 2019, doi:10.1016/j.memsci.2019.117212 [25] QIAO X, CHUNG T S. Diamine modification of P84 polyimide membranes for pervaporation dehydration of isopropanol[J]. AIChE Journal, 2006, 52(10):3462-3472 [26] SHEN Q, LIN Y, UEDA T, et al. The underlying mechanism insights into support polydopamine decoration toward ultrathin polyamide membranes for high-performance reverse osmosis[J]. Journal of Membrane Science, 2022, doi:10.1016/j.memsci.2022.120269 [27] CHENG X, PENG Y, LI S, et al. Alginate hydrogel interlayer assisted interfacial polymerization for enhancing the separation performance of reverse osmosis membrane[J]. Journal of Membrane Science, 2021, doi:10.1016/j.memsci.2021.119680 [28] DAI R, HAN H, WANG T, et al. Enhanced removal of hydrophobic endocrine disrupting compounds from wastewater by nanofiltration membranes intercalated with hydrophilic MoS2 nanosheets:Role of surface properties and internal nanochannels[J]. Journal of Membrane Science, 2021, doi:10.1016/j.memsci.2021.119267 [29] HURWITZ G, GUILLEN G R, HOEK E M V. Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements[J]. Journal of Membrane Science, 2010, 349(1/2):349-357 [30] AL-OBAIDI M A, KARA-ZAITRI C, MUJTABA I M. Scope and limitations of the irreversible thermodynamics and the solution diffusion models for the separation of binary and multi-component systems in reverse osmosis process[J]. Computers & Chemical Engineering, 2017, 100:48-79 [31] 岳雅娟. 有机分子在聚乙烯膜中溶解扩散过程的分子模拟[D]. 山东青岛:中国海洋大学,2011 YUE Yajuan. Molecular simulation of dissolution and diffusion of organic molecules in polyethylene membrane[D]. Shandong Qingdao:Ocean University of China,2011(in Chinese) [32] 冯冬晖. 适用于全热交换器的膜的传质性能研究[D]. 北京:清华大学,2009 FENG Donghui. Study on mass transfer performance of membrane suitable for total heat exchanger[D]. Beijing:Tsinghua University,2009(in Chinese) [33] ZHANG Y, RUAN H, GUO C, et al. Thin-film nanocomposite reverse osmosis membranes with enhanced antibacterial resistance by incorporating p-aminophenol-modified graphene oxide[J]. Separation and Purification Technology, 2020, doi:10.1016/j.seppur.2019.116017 [34] CHAE H R, LEE J, LEE C H, et al. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance[J]. Journal of Membrane Science, 2015, 483:128-135 [35] WU H, LIU Y, ZHANG H, et al. Rapid construction of cyclodextrin polyester layer on polyamide for preparing highly permeable reverse osmosis membrane[J]. Journal of Membrane Science, 2022, doi:10.1016/j.memsci.2022.120862 [36] WU H, LIU Y, WANG C, et al. Reconstructing polyamide with nucleophilic catalyst for enhancing reverse osmosis membrane performance[J]. Desalination, 2022, doi:10.1016/j.desal.2022.115886 [37] WANG C, WANG Z, WANG J. Optimizing interfacial polymerization with UV-introduced photo-fries rearrangement for enhancing RO membrane performance[J]. Chemical Engineering Journal, 2022, doi:10.1016/j.cej.2022.135380 [38] ASEMPOUR F, AKBARI S, BAI D, et al. Improvement of stability and performance of functionalized halloysite nano tubes-based thin film nanocomposite membranes[J]. Journal of Membrane Science, 2018, 563:470-480 [39] CHOI W, JEON S, KWON S J, et al. Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization[J]. Journal of Membrane Science, 2017, 527:121-128 [40] MA X, YAO Z, YANG Z, et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity[J]. Environmental Science & Technology Letters, 2018, 5(2):123-130 [41] PANG R, ZHANG K. Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection[J]. Journal of Colloid and Interface Science, 2018, 510:127-132 [42] DUAN J, LITWILLER E, PINNAU I. Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes[J]. Journal of Membrane Science, 2015, 473:157-164 [43] AL-HOBAIB A S, EL GHOUL J, GHILOUFI I, et al. Synthesis and characterization of polyamide thin-film nanocomposite membrane reached by aluminum doped ZnO nanoparticles[J]. Materials Science in Semiconductor Processing, 2016, 42:111-114 [44] HAO X, GAO S, TIAN J, et al. Calcium-carboxyl intrabridging during interfacial polymerization:A novel strategy to improve antifouling performance of thin film composite membranes[J]. Environmental Science & Technology, 2019, 53(8):4371-4379 [45] HU X, SUN J, PENG R, et al. Novel thin-film composite reverse osmosis membrane with superior water flux using parallel magnetic field induced magnetic multi-walled carbon nanotubes[J]. Journal of Cleaner Production, 2020, doi:10.1016/j.jclepro.2019.118423 [46] ZHANG Z, QIN Y, KANG G, et al. Tailoring the internal void structure of polyamide films to achieve highly permeable reverse osmosis membranes for water desalination[J]. Journal of Membrane Science, 2020, doi:10.1016/j.memsci.2019.117518 [47] LIU S, LOW Z X, HEGAB H M, et al. Enhancement of desalination performance of thin-film nanocomposite membrane by cellulose nanofibers[J]. Journal of Membrane Science, 2019, doi:0.1016/j.memsci.2019.117363 [48] YIN J, ZHU G, DENG B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification[J]. Desalination, 2016, 379:93-101 [49] FATHIZADEH M, TIEN H N, KHIVANTSEV K, et al. Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination[J]. Desalination, 2019, 451:125-132 [50] ZARGAR M, HARTANTO Y, JIN B, et al. Polyethylenimine modified silica nanoparticles enhance interfacial interactions and desalination performance of thin film nanocomposite membranes[J]. Journal of Membrane Science, 2017, 541:19-28 [51] DUAN J, PAN Y, PACHECO F, et al. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8[J]. Journal of Membrane Science, 2015, 476:303-310 [52] KHORSHIDI B, THUNDAT T, FLECK B A, et al. A novel approach toward fabrication of high performance thin film composite polyamide membranes[J]. Scientific Reports, 2016, 6(1):1-10
|