[1] QIAO H, ZHOU Y, YU F, et al. Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals[J]. Chemosphere, 2015, 141: 297-303
[2] WAN N W S, TEONG L C, HANAFIAH M A K M. Adsorption of dyes and heavy metal ions by chitosan composites: A review[J]. Carbohydrate Polymers, 2011, 83(4): 1446-1456
[3] YAGUB M T, SEN T, AFROZE S, et al. Dye and its removal from aqueous solution by adsorption: A review[J]. Advances in Colloid and Interface Science, 2014, 209: 172-184
[4] PANDA J, SAHOO J K, PANDA P K, et al. Adsorptive behavior of zeolitic imidazolate framework-8 towards anionic dye in aqueous media: Combined experimental and molecular docking study[J]. Journal of Molecular Liquids, 2019, 278: 536-545
[5] CRINI G. Non-conventional low-cost adsorbents for dye removal: A review[J]. Bioresource Technology, 2006, 97(9): 1061-1085
[6] GUPTA V K. Application of low-cost adsorbents for dye removal-A review[J]. Journal of Environmental Management, 2009, 90(8): 2313-2342
[7] ZHOU C, NI J, ZHANG D, et al. Cellulosic adsorbent functionalized with macrocyclic pyridone pentamer for selectively removing metal cations from aqueous solutions[J]. Carbohydrate Polymers, 2019, 217: 1-5
[8] LIN F, YOU Y, YANG X, et al. Microwave-assisted facile synthesis of TEMPO-oxidized cellulose beads with high adsorption capacity for organic dyes[J]. Cellulose, 2017, 24(11): 5025-5040
[9] ZHOU H, ZHU H, XUE F, et al. Cellulose-based amphoteric adsorbent for the complete removal of low-level heavy metal ions via a specialization and cooperation mechanism[J]. Chemical Engineering Journal, 2020, 385: 123879
[10] LI B, LI M, ZHANG J, et al. Adsorption of Hg (II) ions from aqueous solution by diethylenetriaminepentaacetic acid-modified cellulose[J]. International Journal of Biological Macromolecules, 2019, 122: 149-156
[11] ROUABHIA M, ASSELIN J, TAZI N, et al. Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1439-1446
[12] HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials, 2015, 283: 329-339
[13] CHEN L, LUQUE R, LI Y. Controllable design of tunable nanostructures inside metal-organic frameworks[J]. Chemical Society Reviews, 2017, 46(15): 4614-4630
[14] YOO D K, JHUNG S H. Effect of functional groups of metal-organic frameworks, coated on cotton, on removal of particulate matters via selective interactions[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47649-47657
[15] ZHANG Y, YUAN S, FENG X, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control[J]. Journal of the American Chemical Society, 2016, 138(18): 5785-5788
[16] GAI S, FAN R, XING K, et al. Preparation of composite filters based on porous coordination polymers by using a vacuum filtration method for highly efficient removal of particulate matters[J]. Chemistry-An Asian Journal, 2019, 14(13): 2291-2301
[17] ZHAO X, CHEN L, GUO Y, et al. Porous cellulose nanofiber stringed HKUST-1 polyhedron membrane for air purification[J]. Applied Materials Today, 2019, 14: 96-101
[18] LEI C, GAO J, REN W, et al. Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water[J]. Carbohydrate Polymers, 2019, 205: 35-41
[19] DUAN C, MENG X, LIU C, et al. Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactivation[J]. Carbohydrate Polymers, 2019, 222: 115042
[20] PARK J, OH M. Construction of flexible metal-organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture[J]. Nanoscale, 2017, 9(35): 12850-12854
[21] NEUFELD M J, HARDING J L, REYNOLDS M M. Immobilization of meta-organic framework copper(II) benzene-1, 3, 5-tricarboxylate (CuBTC) onto cotton fabric as a nitric oxide release catalyst[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26742-26750
[22] XU X, GAO B, TANG X, et al. Characteristics of cellulosic amine-crosslinked copolymer and its sorption properties for Cr(VI) from aqueous solutions[J]. Journal of Hazardous Materials, 2011, 189(1/2): 420-426
[23] WU Q, HE H, ZHOU H, et al. Multiple active sites cellulose-based adsorbent for the removal of low-level Cu(II), Pb(II) and Cr(VI) via multiple cooperative mechanisms[J]. Carbohydrate Polymers, 2020, 233: 115860
[24] LI L, CHEN R, LI Y, et al. Novel cotton fiber-covalent organic framework hybrid monolith for reversible capture of iodine[J]. Cellulose, 2020, 27(10): 5879-5892
[25] JÓ?WIAK T, FILIPKOWSKA U, BRYM S, et al. The use of aminated cotton fibers as an unconventional sorbent to remove anionic dyes from aqueous solutions[J]. Cellulose, 2020, 27(7): 3957-3969
[26] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851
[27] HAO X, LIANG Y, ZHEN H, et al. Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2[J]. Journal of Solid State Chemistry, 2020, 287: 121323
[28] ZHU H, CAO X, HE Y, et al. Removal of Cu2+ from aqueous solutions by the novel modified bagasse pulp cellulose: Kinetics, isotherm and mechanism[J]. Carbohydrate Polymers, 2015, 129: 115-126
[29] SCHELLING M, OTAL E, KIM M, et al. Conformal functionalization of cotton fibers via isoreticular expansion of UiO-66 metal-organic frameworks[J]. Coatings, 2020, 10(12): 1172
[30] SHEN L, WU W, LIANG R, et al. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst[J]. Nanoscale, 2013, 5(19): 9374-9382
[31] LUAN Y, QI Y, GAO H, et al. Synthesis of an amino-functionalized metal-organic framework at a nanoscale level for gold nanoparticle deposition and catalysis[J]. Journal of Materials Chemistry A, 2014, 2(48): 20588-20596
[32] SHAO W, WU J, LIU H, et al. Novel bioactive surface functionalization of bacterial cellulose membrane[J]. Carbohydrate Polymers, 2017, 178: 270-276
[33] LIU X, CHANG P R, ZHENG P, et al. Porous cellulose facilitated by ionic liquid[BMIM]Cl: Fabrication, characterization, and modification[J]. Cellulose, 2015, 22(1): 709-715
[34] UDOETOK I A, DIMMICK R M, WILSON L D, et al. Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution[J]. Carbohydrate Polymers, 2016, 136: 329-340
[35] SHEN C, MAO Z, XU H, et al. Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agents simulant[J]. Carbohydrate Polymers, 2019, 213: 184-191
[36] CHEN C, CHEN D, XIE S, et al. Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66: Analysis of surface interactions[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 41043-41054
[37] CHENG R, KANG M, ZHUANG S, et al. Adsorption of Sr(II) from water by mercerized bacterial cellulose membrane modified with EDTA[J]. Journal of Hazardous Materials, 2019, 364: 645-653
[38] ESMAEILI Z, IZADYAR S, HAMZEH Y, et al. Preparation and characterization of highly porous cellulose nanofibrils/chitosan aerogel for acid blue 93 adsorption: Kinetics, isotherms, and thermodynamics analysis[J]. Journal of Chemical & Engineering Data, 2021, 66(2): 1068-1080
[39] WINARTA J, SHAN B H, MCINTYRE S M, et al. A decade of UiO-66 research: A historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal-organic framework[J]. Crystal Growth & Design, 2020, 20(2): 1347-1362
[40] DE?ERMENCI G D, DE?ERMENCI N, AYVAO?LU V, et al. Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies[J]. Journal of Cleaner Production, 2019, 225: 1220-1229
[41] MACHADO F M, BERGMANN C P, LIMA E C, et al. Adsorption of a textile dye from aqueous solutions by carbon nanotubes[J]. Materials Research, 2013, 17(suppl 1): 153-160
[42] LUO X, ZHANG L. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 340-347
[43] IBRAHIM S, SHUY W Z, ANG H M, et al. Preparation of bioadsorbents for effective adsorption of a reactive dye in aqueous solution[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(4): 563-569
[44] HO Y S, NG J C Y, MCKAY G. Kinetics of pollutant sorption by biosorbents: Review[J]. Separation and Purification Methods, 2000, 29(2): 189-232
[45] ERRAIS E, DUPLAY J, DARRAGI F, et al. Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters[J]. Desalination, 2011, 275(1/2/3): 74-81
[46] VAKILI M, RAFATULLAH M, SALAMATINIA B, et al. Elimination of reactive blue 4 from aqueous solutions using 3-aminopropyl triethoxysilane modified chitosan beads[J]. Carbohydrate Polymers, 2015, 132: 89-96
|