|
Chemcial Industry and Engineering 2024, Vol. 41 Issue (1) :47-70 DOI: 10.13353/j.issn.1004.9533.20230151 |
|
||||
Research progress in hydrogen purification technology | ||||
LI Wenbin, WU Yazhou, ZHENG Hao, JIANG Xiaofeng, ZENG Liang | ||||
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China |
|
|||||||||||||||||||||||||
Download: PDF (2430KB) HTML () Export: BibTeX or EndNote (RIS) Supporting Info | |||||||||||||||||||||||||
|
[1] NIKOLAIDIS P, POULLIKKAS A. A comparative overview of hydrogen production processes[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 597-611 [2] 殷伊琳. 我国氢能产业发展现状及展望[J]. 化学工业与工程, 2021, 38(4): 78-83 YIN Yilin. Present situation and prospect of hydrogen energy industry[J]. Chemical Industry and Engineering, 2021, 38(4): 78-83(in Chinese) [3] FAN L, XING L, TU Z, et al. A breakthrough hydrogen and oxygen utilization in a H2-O2 PEMFC stack with dead-ended anode and cathode[J]. Energy Conversion and Management, 2021, 243: 114404 [4] 李子烨, 劳力云, 王谦. 制氢技术发展现状及新技术的应用进展[J]. 现代化工, 2021, 41(7): 86-89, 94 LI Ziye, LAO Liyun, WANG Qian. Development status of hydrogen production technologies and application advances of new technologies[J]. Modern Chemical Industry, 2021, 41(7): 86-89, 94(in Chinese) [5] LI D, XU F, TANG X, et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol[J]. Nature Catalysis, 2022, 5(2): 99-108 [6] WANG M, DENG C, CHEN H, et al. An analytical investigation on the energy efficiency of integration of natural gas hydrate exploitation with H2 production (by in situ CH4 reforming) and CO2 sequestration[J]. Energy Conversion and Management, 2020, 216: 112959 [7] REINA T R, IVANOVA S, CENTENO M A, et al. The role of Au, Cu & CeO2 and their interactions for an enhanced WGS performance[J]. Applied Catalysis B: Environmental, 2016, 187: 98-107 [8] ZHOU S, YUAN Z, WANG S. Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts: PEMFC applications[J]. International Journal of Hydrogen Energy, 2006, 31(7): 924-933 [9] BASCHUK J J, LI X. Carbon monoxide poisoning of proton exchange membrane fuel cells[J]. International Journal of Energy Research, 2001, 25(8): 695-713 [10] CAO S, ZHAO Y, LEE S, et al. High-loading single Pt atom sites[Pt-O(OH) x] catalyze the CO PROX reaction with high activity and selectivity at mild conditions[J]. Science Advances, 2020, 6(25): eaba3809 [11] JANSSEN G J M. Modelling study of CO2 poisoning on PEMFC anodes[J]. Journal of Power Sources, 2004, 136(1): 45-54 [12] 王新之. 高纯氢的生产方法[J]. 化学工业与工程,1987,(4):39-43, 28 WANG Xinzhi. Production methods for high purity hydrogen[J]. Chemical Industry and Engineering,1987,(4):39-43, 28(in Chinese) [13] DELGADO DOBLADEZ J A, ÁGUEDA MATÉ V I, TORRELLAS S Á, et al. Efficient recovery of syngas from dry methane reforming product by a dual pressure swing adsorption process[J]. International Journal of Hydrogen Energy, 2021, 46(33): 17522-17533 [14] LUBERTI M, AHN H. Review of polybed pressure swing adsorption for hydrogen purification[J]. International Journal of Hydrogen Energy, 2022, 47(20): 10911-10933 [15] AGUEDA V I, DELGADO J A, UGUINA M A, et al. Adsorption and diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 metal-organic framework extrudates[J]. Chemical Engineering Science, 2015, 124: 159-169 [16] 毛薛刚, 张玉迅, 周洪富, 等. 变压吸附技术在合成氨厂的应用[J]. 低温与特气, 2007, 25(5): 39-43 MAO Xuegang, ZHANG Yuxun, ZHOU Hongfu, et al. The application of PSA in the synthesis ammonia facility[J]. Low Temperature and Specialty Gases, 2007, 25(5): 39-43(in Chinese) [17] GRANDE C A. PSA technology for H2 separation[M]. Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016: 489-508 [18] CHO S H, BHAT S G T, HAN S, et al. Pressure swing adsorption apparatus and method for hydrogen purification using the same: US8298319[P]. 2012-10-30 [19] SHI W, YANG H, SHEN Y, et al. Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19057-19074 [20] KOPAC T, TOPRAK A. Preparation of activated carbons from Zonguldak region coals by physical and chemical activations for hydrogen sorption[J]. International Journal of Hydrogen Energy, 2007, 32(18): 5005-5014 [21] LOPES F V S, GRANDE C A, RIBEIRO A M, et al. Enhancing capacity of activated carbons for hydrogen purification[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3978-3990 [22] HONG S, CHUNG K, BANG G, et al. Adsorption equilibria and kinetics of CO2, CH4, CO, N2, and H2 on KOH-treated activated carbon pellets up to 1000 kPa[J]. Chemical Engineering Journal, 2022, 431: 133396 [23] RELVAS F, WHITLEY R D, SILVA C, et al. Single-stage pressure swing adsorption for producing fuel cell grade hydrogen[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 5106-5118 [24] ZHOU Y, SHEN Y, FU Q, et al. CO enrichment from low-concentration syngas by a layered-bed VPSA process[J]. Industrial & Engineering Chemistry Research, 2017, 56(23): 6741-6754 [25] BREA P, DELGADO J A, ÁGUEDA V I, et al. Multicomponent adsorption of H2, CH4, CO and CO2 in zeolites NaX, CaX and MgX. Evaluation of performance in PSA cycles for hydrogen purification[J]. Microporous and Mesoporous Materials, 2019, 286: 187-198 [26] LOPES F V S, GRANDE C A, RIBEIRO A M, et al. Effect of ion exchange on the adsorption of steam methane reforming off-gases on zeolite 13X[J]. Journal of Chemical & Engineering Data, 2010, 55(1): 184-195 [27] BANU A M, FRIEDRICH D, BRANDANI S, et al. A multiscale study of MOFs as adsorbents in H2 PSA purification[J]. Industrial & Engineering Chemistry Research, 2013, 52(29): 9946-9957 [28] YANG R. Gas separation by adsorption processes[M]. Singapore: World Scientific, 1997 [29] RUTHVEN D M, PRESSURE F. Swing adsorption[M]. New York: VCH Publishers, 1994 [30] MOON D K, PARK Y, OH H T, et al. Performance analysis of an eight-layered bed PSA process for H2 recovery from IGCC with pre-combustion carbon capture[J]. Energy Conversion and Management, 2018, 156: 202-214 [31] SHEN Y, ZHOU Y, LI D, et al. Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas[J]. International Journal of Greenhouse Gas Control, 2017, 65: 55-64 [32] LIU B, YU X, SHI W, et al. Two-stage VSA/PSA for capturing carbon dioxide (CO2) and producing hydrogen (H2) from steam-methane reforming gas[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24870-24882 [33] 钮朝阳, 江南, 沈圆辉, 等. 快速变压吸附制氢工艺的模拟与分析[J]. 化工学报, 2021, 72(2): 1036-1046 NIU Zhaoyang, JIANG Nan, SHEN Yuanhui, et al. Simulation and analysis of rapid pressure swing adsorption for hydrogen production[J]. CIESC Journal, 2021, 72(2): 1036-1046: (in Chinese) [34] 张超, 陈健, 殷文华, 等. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321 ZHANG Chao, CHEN Jian, YIN Wenhua, et al. Transient analysis of pressure swing adsorption hydrogen purification process[J]. CIESC Journal, 2022, 73(1): 308-321(in Chinese) [35] ZHANG C, SHEN Y, ZHANG D, et al. Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC[J]. Energy, 2022, 257: 124715 [36] 陈思睿, 管仲博, 沈圆辉, 等. 兰炭尾气变压吸附制氢捕碳工艺模拟与分析[J]. 天然气化工—C1化学与化工, 2021, 46(S01): 93-100 CHEN Sirui, GUAN Zhongbo, SHEN Yuanhui, et al. Simulation and analysis of hydrogen production and carbon capture process by pressureswing adsorption from blue coke gas[J]. Natural Gas Chemical Industry, 2021, 46(S1): 93-100(in Chinese) [37] LIU K, SONG C, SUBRAMANI V. Hydrogen and Syngas Production and Purification Technologies[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009 [38] 刘来志, 薛子文. 羰基合成工业中分离提纯CO方法[J]. 化工设计通讯, 2010, 36(4): 11-13, 51 LIU Laizhi, XUE Ziwen. A method of separating and purifying CO in carbonyl synthesis industry[J]. Chemical Engineering Design Communications, 2010, 36(4): 11-13, 51(in Chinese) [39] 徐仁贤. 气体分离膜应用的现状和未来[J]. 膜科学与技术, 2003, 23(4): 123-128, 140 XU Renxian. Current status and future of gas membrane separation[J]. Membrane Science and Technology, 2003, 23(4): 123-128, 140(in Chinese) [40] NEMESTÓTHY N, BAKONYI P, TÓTH G, et al. Feasibility study of gas separation membranes for biohydrogen separation[J]. Procedia Engineering, 2012, 44: 976-979 [41] LI D, CHUNG T S, WANG R, et al. Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation[J]. Journal of Membrane Science, 2002, 198(2): 211-223 [42] HAMID M A A, CHUNG Y T, ROHANI R, et al. Miscible-blend polysulfone/polyimide membrane for hydrogen purification from palm oil mill effluent fermentation[J]. Separation and Purification Technology, 2019, 209: 598-607 [43] NADERI A, CHUNG T S, WEBER M, et al. High performance dual-layer hollow fiber membrane of sulfonated polyphenylsulfone/polybenzimidazole for hydrogen purification[J]. Journal of Membrane Science, 2019, 591: 117292 [44] LOUIE J S, PINNAU I, REINHARD M. Gas and liquid permeation properties of modified interfacial composite reverse osmosis membranes[J]. Journal of Membrane Science, 2008, 325(2): 793-800 [45] 董子丰. 氢气膜分离技术的现状, 特点和应用[J]. 工厂动力, 2000(1): 25-35 [46] PAGLIERI S N, WAY J D. Innovations in palladium membrane research[J]. Separation and Purification Methods, 2002, 31(1): 1-169 [47] ZHAO C, GOLDBACH A, XU H. Low-temperature stability of body-centered cubic PdCu membranes[J]. Journal of Membrane Science, 2017, 542: 60-67 [48] UEMIYA S, MATSUDA T, KIKUCHI E. Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics[J]. Journal of Membrane Science, 1991, 56(3): 315-325 [49] PETERS T A, STANGE M, BREDESEN R. On the high pressure performance of thin supported Pd-23%Ag membranes—Evidence of ultrahigh hydrogen flux after air treatment[J]. Journal of Membrane Science, 2011, 378(1/2): 28-34 [50] PETERS T A, STANGE M, VEENSTRA P, et al. The performance of Pd-Ag alloy membrane films under exposure to trace amounts of H2S[J]. Journal of Membrane Science, 2016, 499: 105-115 [51] BRAUN F, TARDITI A M, MILLER J B, et al. Pd-based binary and ternary alloy membranes: Morphological and perm-selective characterization in the presence of H2S[J]. Journal of Membrane Science, 2014, 450: 299-307 [52] TOSQUES J, HONRADO GUERREIRO B, MARTIN M H, et al. Hydrogen solubility of bcc PdCu and PdCuAg alloys prepared by mechanical alloying[J]. Journal of Alloys and Compounds, 2017, 698: 725-730 [53] 韩坤鹏, 耿新国, 刘铁斌. 炼厂低浓度氢气回收利用的技术现状及进展[J]. 当代化工, 2020, 49(3): 665-669, 682 HAN Kunpeng, GENG Xinguo, LIU Tiebin. Technology status and development of recovering hydrogen from refinery offgas[J]. Contemporary Chemical Industry, 2020, 49(3): 665-669, 682 (in Chinese) [54] ATSONIOS K, PANOPOULOS K D, DOUKELIS A, et al. Cryogenic method for H2 and CH4 recovery from a rich CO2 stream in pre-combustion carbon capture and storage schemes[J]. Energy, 2013, 53: 106-113 [55] JORDAL K, ANANTHARAMAN R, PETERS T A, et al. High-purity H2 production with CO2 capture based on coal gasification[J]. Energy, 2015, 88: 9-17 [56] LIU K, WANG A, ZHANG T. Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts[J]. ACS Catalysis, 2012, 2(6): 1165-1178 [57] KUGAI J, MORIYA T, SEINO S, et al. Effect of support for PtCu bimetallic catalysts synthesized by electron beam irradiation method on preferential CO oxidation[J]. Applied Catalysis B: Environmental, 2012, 126: 306-314 [58] NAKNAM P, LUENGNARUEMITCHAI A, WONGKASEMJIT S, et al. Preferential catalytic oxidation of carbon monoxide in presence of hydrogen over bimetallic AuPt supported on zeolite catalysts[J]. Journal of Power Sources, 2007, 165(1): 353-358 [59] PARINYASWAN A, PONGSTABODEE S, LUENGNARUEMITCHAI A. Catalytic performances of Pt-Pd/CeO2 catalysts for selective CO oxidation[J]. International Journal of Hydrogen Energy, 2006, 31(13): 1942-1949 [60] KO E Y, PARK E, LEE H, et al. Supported Pt-Co catalysts for selective CO oxidation in a hydrogen-rich stream[J]. Angewandte Chemie International Edition, 2007, 46(5): 734-737 [61] KOMATSU T, TAMURA A. Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen[J]. Journal of Catalysis, 2008, 258(2): 306-314 [62] ZHANG H, LIN D, XU G, et al. Facile synthesis of carbon supported Pt-nanoparticles with Fe-rich surface: A highly active catalyst for preferential CO oxidation[J]. International Journal of Hydrogen Energy, 2015, 40(4): 1742-1751 [63] FU Q, LI W, YAO Y, et al. Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328(5982): 1141-1144 [64] CHEN G, ZHAO Y, FU G, et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation[J]. Science, 2014, 344(6183): 495-499 [65] GUO X, FU Q, NING Y, et al. Ferrous centers confined on core-shell nanostructures for low-temperature CO oxidation[J]. Journal of the American Chemical Society, 2012, 134(30): 12350-12353 [66] ZHANG H, LIU X, ZHANG N, et al. Construction of ultrafine and stable PtFe nano-alloy with ultra-low Pt loading for complete removal of CO in PROX at room temperature[J]. Applied Catalysis B: Environmental, 2016, 180: 237-245 [67] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641 [68] ZHAO H, WANG D, GAO C, et al. Ultrafine platinum/iron oxide nanoconjugates confined in silica nanoshells for highly durable catalytic oxidation[J]. Journal of Materials Chemistry A, 2016, 4(4): 1366-1372 [69] HARUTA M, YAMADA N, KOBAYASHI T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. Journal of Catalysis, 1989, 115(2): 301-309 [70] MORETTI E, RODRÍGUEZ-AGUADO E, MOLINA A I, et al. Sustainable photo-assisted CO oxidation in H2-rich stream by simulated solar light response of Au nanoparticles supported on TiO2[J]. Catalysis Today, 2018, 304: 135-142 [71] SCHUBERT M M, PLZAK V, GARCHE J, et al. Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas[J]. Catalysis Letters, 2001, 76(3): 143-150 [72] HERNÁNDEZ J A, GÓMEZ S A, ZEPEDA T A, et al. Insight into the deactivation of Au/CeO2 catalysts studied by in situ spectroscopy during the CO-PROX reaction[J]. ACS Catalysis, 2015, 5(7): 4003-4012 [73] DE OLIVEIRA JARDIM E, RICO-FRANCÉS S, COLOMA F, et al. Superior performance of gold supported on doped CeO2 catalysts for the preferential CO oxidation (PROX)[J]. Applied Catalysis A: General, 2014, 487: 119-129 [74] REINA T R, MEGÍAS-SAYAGO C, FLOREZ A P, et al. H2 oxidation as criterion for PrOx catalyst selection: Examples based on Au-CoOx-supported systems[J]. Journal of Catalysis, 2015, 326: 161-171 [75] MIAO Y, LI W, SUN Q, et al. Nanogold supported on Manganese oxide doped alumina microspheres as a highly active and selective catalyst for CO oxidation in a H2-rich stream[J]. Chemical Communications, 2015, 51(100): 17728-17731 [76] LIN Q, QIAO B, HUANG Y, et al. La-doped Al2O3 supported Au nanoparticles: Highly active and selective catalysts for PROX under PEMFC operation conditions[J]. Chemical Communications, 2014, 50(21): 2721-2724 [77] QIAO B, LIU J, WANG Y, et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts[J]. ACS Catalysis, 2015, 5(11): 6249-6254 [78] MITSUI T, ROSE M K, FOMIN E, et al. Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies[J]. Nature, 2003, 422(6933): 705-707 [79] BECK A, YANG A, LELAND A R, et al. Understanding the preferential oxidation of carbon monoxide (PrOx) using size-controlled Au nanocrystal catalyst[J]. AIChE Journal, 2018, 64(8): 3159-3167 [80] KIPNIS M. Gold in CO oxidation and PROX: The role of reaction exothermicity and nanometer-scale particle size[J]. Applied Catalysis B: Environmental, 2014, 152/153: 38-45 [81] WANG J, LU A, LI M, et al. Thin porous alumina sheets as supports for stabilizing gold nanoparticles[J]. ACS Nano, 2013, 7(6): 4902-4910 [82] GRISEL R J H, NIEUWENHUYS B E. Selective oxidation of CO, over supported Au catalysts[J]. Journal of Catalysis, 2001, 199(1): 48-59 [83] LI X, FANG S, TEO J, et al. Activation and deactivation of Au-Cu/SBA-15 catalyst for preferential oxidation of CO in H2-rich gas[J]. ACS Catalysis, 2012, 2(3): 360-369 [84] ZHENG Z, TEO J, CHEN X, et al. Correlation of the catalytic activity for oxidation taking place on various TiO2Surfaces with surface OH groups and surface oxygen vacancies[J]. Chemistry-A European Journal, 2010, 16(4): 1202-1211 [85] DESMOND NG J W, ZHONG Z, LUO J, et al. Enhancing preferential oxidation of CO in H2 on Au/α-Fe2O3 catalyst via combination with APTES/SBA-15 CO2-sorbent[J]. International Journal of Hydrogen Energy, 2010, 35(23): 12724-12732 [86] ZHONG Z, LIN J, TEH S P, et al. A rapid and efficient method to deposit gold particles onto catalyst supports and its application for CO oxidation at low temperatures[J]. Advanced Functional Materials, 2007, 17(8): 1402-1408 [87] COSTELLO C K, YANG J, LAW H Y, et al. On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3[J]. Applied Catalysis A: General, 2003, 243(1): 15-24 [88] HARUTA M, TSUBOTA S, KOBAYASHI T, et al. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4[J]. Journal of Catalysis, 1993, 144(1): 175-192 [89] HUANG Y, WANG A, LI L, et al. "Ir-in-ceria": A highly selective catalyst for preferential CO oxidation[J]. Journal of Catalysis, 2008, 255(2): 144-152 [90] GUAN H, LIN J, LI L, et al. Highly active subnano Rh/Fe(OH)x catalyst for preferential oxidation of CO in H2-rich stream[J]. Applied Catalysis B: Environmental, 2016, 184: 299-308 [91] POLSTER C S, NAIR H, BAERTSCH C D. Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide catalyst[J]. Journal of Catalysis, 2009, 266(2): 308-319 [92] DAVÓ-QUIÑONERO A, NAVLANI-GARCÍA M, LOZANO-CASTELLÓ D, et al. Role of hydroxyl groups in the preferential oxidation of CO over copper oxide-cerium oxide catalysts[J]. ACS Catalysis, 2016, 6(3): 1723-1731 [93] DREYER J A H, GROSSMANN H K, CHEN J F, et al. Preferential oxidation of carbon monoxide over Pt-FeOx/CeO2 synthesized by two-nozzle flame spray pyrolysis[J]. Journal of Catalysis, 2015, 329: 248-261 [94] LU J, WANG J, ZOU Q, et al. Unravelling the nature of the active species as well as the doping effect over Cu/Ce-based catalyst for carbon monoxide preferential oxidation[J]. ACS Catalysis, 2019, 9(3): 2177-2195 [95] LU P, QIAO B, LU N, et al. Photochemical deposition of highly dispersed Pt nanoparticles on porous CeO2 Nanofibers for the water-gas shift reaction[J]. Advanced Functional Materials, 2015, 25(26): 4153-4162 [96] WU Z, LI M, OVERBURY S H. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes[J]. Journal of Catalysis, 2012, 285(1): 61-73 [97] KONSOLAKIS M. The role of Copper-Ceria interactions in catalysis science: Recent theoretical and experimental advances[J]. Applied Catalysis B: Environmental, 2016, 198: 49-66 [98] SCIRÈ S, CRISAFULLI C, RICCOBENE P M, et al. Selective oxidation of CO in H2-rich stream over Au/CeO2 and Cu/CeO2 catalysts: An insight on the effect of preparation method and catalyst pretreatment[J]. Applied Catalysis A: General, 2012, 417/418: 66-75 [99] BARBATO P S, COLUSSI S, DI BENEDETTO A, et al. Origin of high activity and selectivity of CuO/CeO2 catalysts prepared by solution combustion synthesis in CO-PROX reaction[J]. The Journal of Physical Chemistry C, 2016, 120(24): 13039-13048 [100] GAMARRA D, BELVER C, FERNÁNDEZ-GARCÍA M, et al. Selective CO oxidation in excess H2 over copper-ceria catalysts: identification of active entities/species[J]. Journal of the American Chemical Society, 2007, 129(40): 12064-12065 [101] WANG J, LIN S, HUANG T. Selective CO oxidation in rich hydrogen over CuO/Samaria-doped ceria[J]. Applied Catalysis A: General, 2002, 232(1/2): 107-120 [102] GUO X, ZHOU R. Identification of the nano/micro structure of CeO2(rod) and the essential role of interfacial copper-ceria interaction in CuCe(rod) for selective oxidation of CO in H2-rich streams[J]. Journal of Power Sources, 2017, 361: 39-53 [103] LI J, HAN Y, ZHU Y, et al. Purification of hydrogen from carbon monoxide for fuel cell application over modified mesoporous CuO-CeO2 catalysts[J]. Applied Catalysis B: Environmental, 2011, 108/109: 72-80 [104] MAI H, SUN L, ZHANG Y, et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. The Journal of Physical Chemistry B, 2005, 109(51): 24380-24385 [105] WANG F, LI C, ZHANG X, et al. Catalytic behavior of supported Ru nanoparticles on the{100}, {110}, and{111}facet of CeO2[J]. Journal of Catalysis, 2015, 329: 177-186 [106] XIE Y, WU J, JING G, et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes[J]. Applied Catalysis B: Environmental, 2018, 239: 665-676 [107] GUO X, ZHOU R. A new insight into the morphology effect of ceria on CuO/CeO2 catalysts for CO selective oxidation in hydrogen-rich gas[J]. Catalysis Science & Technology, 2016, 6(11): 3862-3871 [108] KANG M, SONG M, LEE C H. Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts[J]. Applied Catalysis A: General, 2003, 251(1): 143-156 [109] XIE X, LI Y, LIU Z, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458(7239): 746-749 [110] BAO T, ZHAO Z, DAI Y, et al. Supported Co3O4-CeO2 catalysts on modified activated carbon for CO preferential oxidation in H2-rich gases[J]. Applied Catalysis B: Environmental, 2012, 119/120: 62-73 [111] GRILLO F, NATILE M M, GLISENTI A. Low temperature oxidation of carbon monoxide: The influence of water and oxygen on the reactivity of a Co3O4 powder surface[J]. Applied Catalysis B: Environmental, 2004, 48(4): 267-274 [112] NYATHI T M, FADLALLA M I, FISCHER N, et al. Support and gas environment effects on the preferential oxidation of carbon monoxide over Co3O4 catalysts studied in situ[J]. Applied Catalysis B: Environmental, 2021, 297: 120450 [113] NYATHI T M, FISCHER N, YORK A P E, et al. Impact of nanoparticle-support interactions in Co3O4/Al2O3 catalysts for the preferential oxidation of carbon monoxide[J]. ACS Catalysis, 2019, 9(8): 7166-7178 [114] GAWADE P, BAYRAM B, ALEXANDER A M C, et al. Preferential oxidation of CO (PROX) over CoOx/CeO2 in hydrogen-rich streams: Effect of cobalt loading[J]. Applied Catalysis B: Environmental, 2012, 128: 21-30 [115] GUO Q, LIU Y. MnOx modified Co3O4-CeO2 catalysts for the preferential oxidation of CO in H2-rich gases[J]. Applied Catalysis B: Environmental, 2008, 82(1/2): 19-26 [116] CWELE T, MAHADEVAIAH N, SINGH S, et al. Effect of Cu additives on the performance of a cobalt substituted ceria (Ce0.90Co0.10O2-δ) catalyst in total and preferential CO oxidation[J]. Applied Catalysis B: Environmental, 2016, 182: 1-14 [117] NYATHI T M, FISCHER N, YORK A P E, et al. Effect of crystallite size on the performance and phase transformation of Co3O4/Al2O3 catalysts during CO-PrOx-an in situ study[J]. Faraday Discussions, 2017, 197: 269-285 [118] YAN C, CHEN H, HU R, et al. Synthesis of mesoporous Co-Ce oxides catalysts by glycine-nitrate combustion approach for CO preferential oxidation reaction in excess H2[J]. International Journal of Hydrogen Energy, 2014, 39(32): 18695-18701 [119] BROQVIST P, PANAS I, PERSSON H. A DFT study on CO oxidation over Co3O4[J]. Journal of Catalysis, 2002, 210(1): 198-206 [120] OMATA K, TAKADA T, KASAHARA S, et al. Active site of substituted cobalt spinel oxide for selective oxidation of COH2[J]. Applied Catalysis A: General, 1996, 146(2): 255-267 [121] GRZYBEK G, CIURA K, GRYBOS' J, et al. CO-PROX reaction over Co3O4|Al2O3 catalysts—Impact of the spinel active phase faceting on the catalytic performance[J]. The Journal of Physical Chemistry C, 2019, 123(33): 20221-20232 [122] KHASU M, NYATHI T, MORGAN D J, et al. Co3O4 morphology in the preferential oxidation of CO[J]. Catalysis Science & Technology, 2017, 7(20): 4806-4817 [123] JANSSON J, SKOGLUNDH M, FRIDELL E, et al. A mechanistic study of low temperature CO oxidation over cobalt oxide[J]. Topics in Catalysis, 2001, 16(1): 385-389 [124] WANG C, TANG C, TSAI H C, et al. In situ FT-IR spectroscopic studies on the mechanism of the catalytic oxidation of carbon monoxide over supported cobalt catalysts[J]. Catalysis Letters, 2006, 107(1): 31-37 [125] YUNG M, ZHAO Z, WOODS M P, et al. Preferential oxidation of carbon monoxide on CoOx/ZrO2[J]. Journal of Molecular Catalysis A: Chemical, 2008, 279(1): 1-9 [126] ZHENG Y, CHENG Y, WANG Y, et al. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance[J]. The Journal of Physical Chemistry B, 2006, 110(7): 3093-3097 [127] ŠMIT G, ZRNČEVIĆ S, LÁZÁR K. Adsorption and low-temperature oxidation of CO over iron oxides[J]. Journal of Molecular Catalysis A: Chemical, 2006, 252(1/2): 103-106 [128] LI P, MISER D E, RABIEI S, et al. The removal of carbon monoxide by iron oxide nanoparticles[J]. Applied Catalysis B: Environmental, 2003, 43(2): 151-162 [129] YESTE M P, VIDAL H, GARCÍA-CABEZA A L, et al. Low temperature prepared copper-iron mixed oxides for the selective CO oxidation in the presence of hydrogen[J]. Applied Catalysis A: General, 2018, 552: 58-69 [130] LAGUNA O H, CENTENO M A, BOUTONNET M, et al. Fe-doped ceria solids synthesized by the microemulsion method for CO oxidation reactions[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): 621-629 [131] SIRIJARUPHAN A, GOODWIN J G, RICE R W. Effect of Fe promotion on the surface reaction parameters of Pt/γ-Al2O3 for the selective oxidation of CO[J]. Journal of Catalysis, 2004, 224(2): 304-313 [132] QIAO B, LIU L, ZHANG J, et al. Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations: From gold to palladium[J]. Journal of Catalysis, 2009, 261(2): 241-244 [133] TAKENAKA S, SHIMIZU T, OTSUKA K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts[J]. International Journal of Hydrogen Energy, 2004, 29(10): 1065-1073 [134] LIU Q, DONG X, MO X, et al. Selective catalytic methanation of CO in hydrogen-rich gases over Ni/ZrO2 catalyst[J]. Journal of Natural Gas Chemistry, 2008, 17(3): 268-272 [135] HWANG S, LEE J, HONG U, et al. Hydrogenation of carbon monoxide to methane over mesoporous nickel-M-alumina (M=Fe, Ni, Co, Ce, and La) xerogel catalysts[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 243-248 [136] HU D, GAO J, PING Y, et al. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 4875-4886 [137] ZHAO A, YING W, ZHANG H, et al. Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter[J]. Journal of Natural Gas Chemistry, 2012, 21(2): 170-177 [138] KONISHCHEVA M V, POTEMKIN D I, SNYTNIKOV P V, et al. The insights into chlorine doping effect on performance of ceria supported nickel catalysts for selective CO methanation[J]. Applied Catalysis B: Environmental, 2018, 221: 413-421 [139] BAI Y, ZHANG J, YANG G, et al. Insight into the nanoparticle growth in supported Ni catalysts during the early stage of CO hydrogenation reaction: The important role of adsorbed CO molecules[J]. ACS Catalysis, 2018, 8(7): 6367-6374 [140] GALLETTI C, SPECCHIA S, SARACCO G, et al. CO-selective methanation over Ru-γAl2O3 catalysts in H2-rich gas for PEM FC applications[J]. Chemical Engineering Science, 2010, 65(1): 590-596 [141] ZHANG Y, ZHANG G, WANG L, et al. Selective methanation of carbon monoxide over Ru-based catalysts in H2-rich gases[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(5): 1590-1597 [142] TADA S, KIKUCHI R. Preparation of Ru nanoparticles on TiO2 using selective deposition method and their application to selective CO methanation[J]. Catalysis Science & Technology, 2014, 4(1): 26-29 [143] CHEN S L, ABDEL-MAGEED A M, LI D, et al. Morphology-engineered highly active and stable Ru/TiO2 catalysts for selective CO methanation[J]. Angewandte Chemie International Edition, 2019, 58(31): 10732-10736 [144] TADA S, KIKUCHI R, TAKAGAKI A, et al. Effect of metal addition to Ru/TiO2 catalyst on selective CO methanation[J]. Catalysis Today, 2014, 232: 16-21 [145] TADA S, MINORI D, OTSUKA F, et al. Effect of Ru and Ni ratio on selective CO methanation over Ru-Ni/TiO2[J]. Fuel, 2014, 129: 219-224 [146] 陈长聘,王启东,吴京. 金属氢化物法分离与回收含氢气流中氢的研究[J]. 化学工程,1987,(5):64-69 CHEN Changpin,WANG Qidong,WU Jing. Study on separation and recovery of hydrogen from hydrogen containing stream by metal hydride method[J]. Chemical Engineering(China),1987,(5):4-69(in Chinese) [147] DUNIKOV D, BORZENKO V, BLINOV D, et al. Biohydrogen purification using metal hydride technologies[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21787-21794 [148] KAZAKOV A N, ROMANOV I A, MITROKHIN S V, et al. Experimental investigations of AB5-type alloys for hydrogen separation from biological gas streams[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4685-4692 [149] DUNIKOV D, BORZENKO V, MALYSHENKO S. Influence of impurities on hydrogen absorption in a metal hydride reactor[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13843-13848 [150] WANG X, IWATA K, SUDA S. Effects of carbon monoxide on the hydriding reactions of the untreated and fluorinated LaNi4.7Al0.3 alloys[J]. Journal of Alloys and Compounds, 1995, 231(1/2): 829-834 [151] LOTOTSKYY M, MODIBANE K D, WILLIAMS M, et al. Application of surface-modified metal hydrides for hydrogen separation from gas mixtures containing carbon dioxide and monoxide[J]. Journal of Alloys and Compounds, 2013, 580: S382-S385 [152] HANADA N, ASADA H, NAKAGAWA T, et al. Effect of CO2 on hydrogen absorption in Ti-Zr-Mn-Cr based AB2 type alloys[J]. Journal of Alloys and Compounds, 2017, 705: 507-516 |
Copyright 2010 by Chemcial Industry and Engineering
|