[1] Fu T, Ma Y, Funfschilling D, et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J]. Chemical Engineering Science, 2009, 64(10):2392-2400
[2] Santos J, Trujillo-Cayado L A, Calero N, et al. Development of eco-friendly emulsions produced by microfluidization technique[J]. Journal of Industrial and Engineering Chemistry, 2016, 36:90-95
[3] Whitesides G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101):368-373
[4] Song H, Chen D, Ismagilov R F. Reactions in droplets in microfluidic channels[J]. Angewandte Chemie (International Ed in English), 2006, 45(44):7336-7356
[5] 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4):427-439 Chen Guangwen, Yuan Quan. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4):427-439(in Chinese)
[6] Xu J, Ahn B, Lee H, et al. Droplet-based microfluidic device for multiple-droplet clustering[J]. Lab on a Chip, 2012, 12(4):725-730
[7] Fu T, Ma Y. Bubble formation and breakup dynamics in microfluidic devices:A review[J]. Chemical Engineering Science, 2015, 135:343-372
[8] Zhu P, Wang L. Passive and active droplet generation with microfluidics:A review[J]. Lab on a Chip, 2016, 17(1):34-75
[9] Becht S, Franke R, Geißelmann A, et al. Micro process technology as a means of process intensification[J]. Chemical Engineering & Technology, 2007, 30(3):295-299
[10] Hessel V, L we H, Sch nfeld F. Micromixers-a review on passive and active mixing principles[J]. Chemical Engineering Science, 2005, 60(8/9):2479-2501
[11] Utada A S, Lorenceau E, Link D R, et al. Monodisperse double emulsions generated from a microcapillary device[J]. Science, 2005, 308(5721):537-541
[12] Christopher G F, Bergstein J, End N B, et al. Coalescence and splitting of confined droplets at microfluidic junctions[J]. Lab on a Chip, 2009, 9(8):1102-1109
[13] Du W, Fu T, Zhu C, et al. Breakup dynamics for high-viscosity droplet formation in a flow-focusing device:Symmetrical and asymmetrical ruptures[J]. AIChE Journal, 2016, 62(1):325-337
[14] Du W, Fu T, Zhang Q, et al. Breakup dynamics for droplet formation in a flow-focusing device:Rupture position of viscoelastic thread from matrix[J]. Chemical Engineering Science, 2016, 153:255-269
[15] van Loo S, Stoukatch S, Kraft M, et al. Droplet formation by squeezing in a microfluidic cross-junction[J]. Microfluidics and Nanofluidics, 2016, 20(10):1-12
[16] Christopher G F, Noharuddin N N, Taylor J A, et al. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2008, doi:10.1103/PhysRevE.78.036317
[17] Link D R, Anna S L, Weitz D A, et al. Geometrically mediated breakup of drops in microfluidic devices[J]. Physical Review Letters, 2004, doi:10.1103/PhysRevLett.92.054503
[18] Leshansky A M, Pismen L M. Breakup of drops in a microfluidic T junction[J]. Physics of Fluids, 2009, doi:10.1063/1.3078515
[19] Yamada M, Doi S, Maenaka H, et al. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis[J]. Journal of Colloid and Interface Science, 2008, 321(2):401-407
[20] Hoang D A, Portela L M, Kleijn C R, et al. Dynamics of droplet breakup in a T-junction[J]. Journal of Fluid Mechanics, 2013, doi:10.1017/jfm.2013.18
[21] Chen B, Li G, Wang W, et al. 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the Volume-Of-Fluid method[J]. Applied Thermal Engineering, 2015, 88:94-101
[22] Ma R, Fu T, Zhang Q, et al. Breakup dynamics of ferrofluid droplet in a microfluidic T-junction[J]. Journal of Industrial and Engineering Chemistry, 2017, 54:408-420
[23] Ménétrier-Deremble L, Tabeling P. Droplet breakup in microfluidic junctions of arbitrary angles[J]. Physical Review E, 2006, doi:10.1103/PhysRevE.74.035303
[24] Bedram A, Moosavi A. Droplet breakup in an asymmetric microfluidic T junction[J]. The European Physical Journal E, 2011, doi:10.1140/epje/i2011-11078-7
[25] Ma P, Fu T, Zhu C, et al. Asymmetrical breakup and size distribution of droplets in a branching microfluidic T-junction[J]. Korean Journal of Chemical Engineering, 2019, 36(1):21-29
[26] Agnihotri S N, Raveshi M R, Bhardwaj R, et al. Droplet breakup at the entrance to a bypass channel in a microfluidic system[J]. Physical Review Applied, 2019, doi:10.1103/PhysRevApplied.11.034020
[27] Bremond N, Thiam A R, Bibette J. Decompressing emulsion droplets favors coalescence[J]. Physical Review Letters, 2008, doi:10.1103/PhysRevLett.100.024501
[28] Ma R, Zhang Q, Fu T, et al. Manipulation of microdroplets at a T-junction:Coalescence and scaling law[J]. Journal of Industrial and Engineering Chemistry, 2018, 65:272-279
[29] Mazutis L, Griffiths A D. Selective droplet coalescence using microfluidic systems[J]. Lab on a Chip, 2012, 12(10):1800-1806
[30] Wang K, Lu Y, Yang L, et al. Microdroplet coalescences at microchannel junctions with different collision angles[J]. AIChE Journal, 2013, 59(2):643-649
[31] Zhou Q, Sun Y, Yi S, et al. Investigation of droplet coalescence in nanoparticle suspensions by a microfluidic collision experiment[J]. Soft Matter, 2016, 12(6):1674-1682
[32] Kinoshita H, Kaneda S, Fujii T, et al. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV[J]. Lab on a Chip, 2007, 7(3):338-346
[33] Amini H, Lee W, Di Carlo D. Inertial microfluidic physics[J]. Lab on a Chip, 2014, 14(15):2739-2761
[34] Sarrazin F, Loubière K, Prat L, et al. Experimental and numerical study of droplets hydrodynamics in microchannels[J]. AIChE Journal, 2006, 52(12):4061-4070
[35] Chen X, Xue C, Zhang L, et al. Inertial migration of deformable droplets in a microchannel[J]. Physics of Fluids, 2014, doi:10.1063/1.4901884
[36] Grünberger A, Wiechert W, Kohlheyer D. Single-cell microfluidics:Opportunity for bioprocess development[J]. Current Opinion in Biotechnology, 2014, 29:15-23
[37] Liu D, Zhang H, Fontana F, et al. Microfluidic-assisted fabrication of carriers for controlled drug delivery[J]. Lab on a Chip, 2017, 17(11):1856-1883
[38] Yap S K, Wong W K, Ng N X Y, et al. Three-phase microfluidic reactor networks-Design, modeling and application to scaled-out nanoparticle-catalyzed hydrogenations with online catalyst recovery and recycle[J]. Chemical Engineering Science, 2017, 169:117-127
[39] Liu Z, Wang X, Cao R, et al. Droplet coalescence at microchannel intersection Chambers with different shapes[J]. Soft Matter, 2016, 12(26):5797-5807
[40] Jin B, Kim Y W, Lee Y, et al. Droplet merging in a straight microchannel using droplet size or viscosity difference[J]. Journal of Micromechanics and Microengineering, 2010, doi:10.1088/0960-1317/20/3/035003
[41] Hung L H, Choi K M, Tseng W Y, et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis[J]. Lab on a Chip, 2006, 6(2):174-178
[42] Frenz L, El Harrak A, Pauly M, et al. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles[J]. Angewandte Chemie International Edition, 2008, 47(36):6817-6820
[43] Shintaku H, Kuwabara T, Kawano S, et al. Micro cell encapsulation and its hydrogel-beads production using microfluidic device[J]. Microsystem Technologies, 2007, 13(8/9/10):951-958
[44] Seo Y S, Yoon K, Rafailovich M. Highly ordered monolayer formation of silica beads assisted by ultra-sound and microscopic barrier at air/water interface[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(6):879-883
[45] 肖志良,张博. 基于液滴技术的微流控芯片实验室及其应用[J]. 色谱, 2011, 29(10):949-956 Xiao Zhiliang, Zhang Bo. Droplet microfluidics:technologies and applications[J]. Chinese Journal of Chromatography, 2011, 29(10):949-956(in Chinese)
[46] 邓楠楠, 汪伟, 巨晓洁, 等. 微流控技术操控微尺度液滴及其聚并的研究进展[J]. 中国科学:化学, 2015, 45(1):7-15 Deng Nannan, Wang Wei, Ju Xiaojie, et al. Recent advances in microfluidic manipulation and coalescence of microscale droplets[J]. Scientia Sinica Chimica, 2015, 45(1):7-15(in Chinese)
[47] 张凯, 胡坪, 梁琼麟, 等. 微流控芯片中微液滴的操控及其应用[J]. 分析化学, 2008, 36(4):556-562 Zhang Kai, Hu Ping, Liang Qionglin, et al. Control and application of microdroplet in microfluidic chip[J]. Chinese Journal of Analytical Chemistry, 2008, 36(4):556-562(in Chinese)
[48] Shen F, Li Y, Liu Z, et al. Advances in micro-droplets coalescence using microfluidics[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12):1942-1954
[49] Baroud C N, Gallaire F, Dangla R. Dynamics of microfluidic droplets[J]. Lab on a Chip, 2010, 10(16):2032-2045
[50] Zagnoni M, Cooper J M. On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size[J]. Lab on a Chip, 2009, 9(18):2652-2658
[51] Ray A, Varma V B, Jayaneel P J, et al. On demand manipulation of ferrofluid droplets by magnetic fields[J]. Sensors and Actuators B:Chemical, 2017, 242:760-768
[52] Luong T D, Nguyen N T, Sposito A. Thermocoalescence of microdroplets in a microfluidic chamber[J]. Applied Physics Letters, 2012, doi:10.1063/1.4730606
[53] Sesen M, Alan T, Neild A. Microfluidic on-demand droplet merging using surface acoustic waves[J]. Lab on a Chip, 2014, 14(17):3325-3333
[54] Baroud C N, de Saint Vincent M R, Delville J P. An optical toolbox for total control of droplet microfluidics[J]. Lab on a Chip, 2007, 7(8):1029-1033
[55] Grüttner C, Müller K, Teller J, et al. Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy[J]. Journal of Magnetism and Magnetic Materials, 2007, 311(1):181-186
[56] Sarrazin F, Prat L, Di Miceli N, et al. Mixing characterization inside microdroplets engineered on a microcoalescer[J]. Chemical Engineering Science, 2007, 62(4):1042-1048
[57] Priest C, Herminghaus S, Seemann R. Controlled electrocoalescence in microfluidics:Targeting a single lamella[J]. Applied Physics Letters, 2006, doi:10.1063/1.2357039
[58] Wang W, Yang C, Li C. On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays[J]. Lab on a Chip, 2009, 9(11):1504-1506
[59] Gu H, Duits M H, Mugele F. Droplets formation and merging in two-phase flow microfluidics[J]. Int J Mol Sci, 2011, 12(4):2572-2597
[60] Fidalgo L M, Abell C, Huck W T. Surface-induced droplet fusion in microfluidic devices[J]. Lab on a Chip, 2007, 7(8):984-986
[61] Liu Y, Ismagilov R F. Dynamics of coalescence of plugs with a hydrophilic wetting layer induced by flow in a microfluidic chemistrode[J]. Langmuir, 2009, 25(5):2854-2859
[62] Deng N, Sun S, Wang W, et al. A novel surgery-like strategy for droplet coalescence in microchannels[J]. Lab on a Chip, 2013, 13(18):3653-3657
[63] Tan Y, Ho Y L, Lee A P. Droplet coalescence by geometrically mediated flow in microfluidic channels[J]. Microfluidics and Nanofluidics, 2007, 3(4):495-499
[64] Tan Y, Fisher J S, Lee A I, et al. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting[J]. Lab on a Chip, 2004, 4(4):292-298
[65] Niu X, Gulati S, Edel J B, et al. Pillar-induced droplet merging in microfluidic circuits[J]. Lab on a Chip, 2008, 8(11):1837-1841
[66] Yang L, Wang K, Tan J, et al. Experimental study of microbubble coalescence in a T-junction microfluidic device[J]. Microfluidics and Nanofluidics, 2012, 12(5):715-722
[67] Guo W, Zhu C, Fu T, et al. Controllable droplet coalescence in the T-junction microchannel with a funnel-typed expansion chamber[J]. Industrial & Engineering Chemistry Research, 2020, 59(22):10298-10307
[68] Yi H, Zhu C, Fu T, et al. Efficient coalescence of microdroplet in the cross-focused microchannel with symmetrical chamber[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112:52-59
[69] Gunes D Z, Clain X, Breton O, et al. Avalanches of coalescence events and local extensional flows-Stabilisation or destabilisation due to surfactant[J]. Journal of Colloid and Interface Science, 2010, 343(1):79-86
[70] Chesters A K. The modelling of coalescence processes in fluid-liquid dispersions:A review of current understanding[J]. Chemical Engineering Research & Design, 1991, 69(4):259-270
[71] Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices[J]. Annual Review of Fluid Mechanics, 2004, 36(1):381-411
[72] Klaseboer E, Chevaillier J P, Gourdon C, et al. Film drainage between colliding drops at constant approach velocity:Experiments and modeling[J]. Journal of Colloid and Interface Science, 2000, 229(1):274-285
[73] Liao Y, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles[J]. Chemical Engineering Science, 2010, 65(10):2851-2864
[74] Yeo L Y, Matar O K, Perez de Ortiz E S, et al. Film drainage between two surfactant-coated drops colliding at constant approach velocity[J]. Journal of Colloid and Interface Science, 2003, 257(1):93-107
[75] Liu Z, Cao R, Pang Y, et al. The influence of channel intersection angle on droplets coalescence process[J]. Experiments in Fluids, 2015, 56(2):1-4
[76] Hu Y, Pine D J, Leal L G. Drop deformation, breakup, and coalescence with compatibilizer[J]. Physics of Fluids, 2000, 12(3):484-489
[77] Ma P, Liang D, Zhu C, et al. An effective method to facile coalescence of microdroplet in the symmetrical T-junction with expanded convergence[J]. Chemical Engineering Science, 2020, doi:10.1016/j.ces.2019.115389
[78] Jin B, Yoo J Y. Visualization of droplet merging in microchannels using micro-PIV[J]. Experiments in Fluids, 2012, 52(1):235-245
[79] Wang K, Lu Y, Tostado C P, et al. Coalescences of microdroplets at a cross-shaped microchannel junction without strictly synchronism control[J]. Chemical Engineering Journal, 2013, 227:90-96
|