[1] Tran M, Banister D, Bishop J D K, et al. Realizing the electric-vehicle revolution[J]. Nature Climate Change, 2012, 2(5):328-333
[2] Evarts E C. Lithium batteries:To the limits of lithium[J]. Nature, 2015, 526(7575):S93-S95
[3] Janek J, Zeier W G. A solid future for battery development[J]. Nature Energy, 2016, doi:10.1038/nenergy.2016.141
[4] Wang S, Yin Y, Zuo T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials, 2017, doi:10.1002/adma.201703729
[5] Chen S, Niu C, Lee H, et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries[J]. Joule, 2019, 3(4):1094-1105
[6] Li H. Practical evaluation of Li-ion batteries[J]. Joule, 2019, 3(4):911-914
[7] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1):19-29
[8] Demir-Cakan R, Morcrette M, Nouar F, et al. Cathode composites for Li-S batteries via the use of oxygenated porous architectures[J]. Journal of the American Chemical Society, 2011, 133(40):16154-16160
[9] 高鹏, 韩家军, 朱永明, 等. 金属材料锂二次电池锂负极改性[J]. 化学进展, 2009, 21(7):1678-1686 Gao Peng, Han Jiajun, Zhu Yongming, et al. Surface tretment on lithium electrode in rechargeable lithium metal batteries[J]. Progress in Chemistry, 2009, 21(7):1678-1686(in Chinese)
[10] 程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1):51-72 Cheng Xinbing, Zhang Qiang. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry, 2018, 30(1):51-72(in Chinese)
[11] Palacin M R, de Guibert A. Why do batteries fail?[J]. Science, 2016, doi:10.1126/science.1253292
[12] Dornbusch D A, Hilton R, Lohman S D, et al. Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries[J]. Journal of the Electrochemical Society, 2015, 162(3):A262-A268
[13] Park J, Jeong J, Lee Y, et al. Micro-Patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries[J]. Advanced Materials Interfaces, 2016, doi:10.1002/admi.201670049
[14] Xu W, Wang J L, Ding F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2):513-537
[15] Na W, Lee A S, Lee J H, et al. Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders[J]. ACS Applied Materials & Interfaces, 2016, 8(20):12852-12858
[16] Wood K N, Kazyak E, Chadwick A F, et al. Dendrites and pits:Untangling the complex behavior of lithium metal anodes through operando video microscopy[J]. ACS Central Science, 2016, 2(11):790-801
[17] Liu W, Li W, Zhuo D, et al. Core-Shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes[J]. ACS Central Science, 2017, 3(2):135-140
[18] Leung K, Soto F, Hankins K, et al. Stability of solid electrolyte interphase components on lithium metal and reactive anode material surfaces[J]. The Journal of Physical Chemistry C, 2016, 120(12):6302-6313
[19] Cheng X, Zhang R, Zhao C, et al. Toward safe lithium metal anode in rechargeable batteries:A review[J]. Chemical Reviews, 2017, 117(15):10403-10473
[20] Shi Y, Wang Z, Gao H, et al. A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(3):1092-1098
[21] Lu L, Ge J, Yang J, et al. Free-Standing copper nanowire network current collector for improving lithium anode performance[J]. Nano Letters, 2016, 16(7):4431-4437
[22] Zheng J, Engelhard M H, Mei D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, doi:10.1038/nenergy.2017.12
[23] Qian J, Xu W, Bhattacharya P, et al. Dendrite-Free Li deposition using trace-amounts of water as an electrolyte additive[J]. Nano Energy, 2015, 15:135-144
[24] Zhao C, Cheng X, Zhang R, et al. Li2S5-Based ternary-salt electrolyte for robust lithium metal anode[J]. Energy Storage Materials, 2016, 3:77-84
[25] Li W, Yao H, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015, doi:10.1038/ncomms8436
[26] Liu Y, Liu Q, Xin L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction[J]. Nature Energy, 2017, do:10.1038/nenergy.2017.83
[27] Ryou M H, Lee D J, Lee J N, et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators[J]. Advanced Energy Materials, 2012, 2(6):645-650
[28] Kim J K, Kim D H, Joo S H, et al. Hierarchical chitin fibers with aligned nanofibrillar architectures:A nonwoven-mat separator for lithium metal batteries[J]. ACS Nano, 2017, 11(6):6114-6121
[29] Choudhury S, Mangal R, Agrawal A, et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nature Communications, 2015, doi:10.1007/978-3-030-28943-03
[30] Kozen A C, Lin C, Pearse A J, et al. Next-Generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9(6):5884-5892
[31] Zeng X, Yin Y, Li N, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries[J]. Journal of the American Chemical Society, 2016, 138(49):15825-15828
[32] Zhou W, Gao H, Goodenough J B. Low-Cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries[J]. Advanced Energy Materials, 2016, doi:10.1002/aenm.201501802
[33] Bouchet R, Maria S, Meziane R, et al. Single-Ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nature Materials, 2013, 12(5):452-457
[34] Zhou W, Wang S, Li Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30):9385-9388
[35] Fu K, Gong Y, Hitz G T, et al. Three-Dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7):1568-1575
[36] Liu W, Lee S, Lin D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, doi:doi.org/10.1021/acsnano.6b06797
[37] Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33:363-386
[38] Zheng G, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9(8):618-623
[39] Zhu B, Jin Y, Hu X, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Advanced Materials, 2017, doi:10.1002/adma.201603755
[40] Bai M, Xie K, Yuan K, et al. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers[J]. Advanced Materials, 2018, doi:10.1002/adma.201801213
[41] Liu K, Pei A, Lee H R, et al. Lithium metal anodes with an adaptive "Solid-liquid" interfacial protective layer[J]. Journal of the American Chemical Society, 2017, 139(13):4815-4820
[42] Zhang R, Cheng X, Zhao C, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016, 28(11):2155-2162
[43] Cheng X, Zhao M, Chen C, et al. Nanodiamonds suppress the growth of lithium dendrites[J]. Nature Communications, 2017, doi:10.1038/s41467-017-00519-2
[44] Chang H, Ilott A J, Trease N M, et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI[J]. Journal of the American Chemical Society, 2015, 137(48):15209-15216
[45] Liu L, Yin Y, Li J, et al. Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes[J]. Chemical Communications, 2018, 54(42):5330-5333
[46] Ye H, Xin S, Yin Y, et al. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons[J]. Journal of the American Chemical Society, 2017, 139(16):5916-5922
[47] Lu L, Zhang Y, Pan Z, et al. Lithiophilic Cu-Ni core-shell nanowire network as a stable host for improving lithium anode performance[J]. Energy Storage Materials, 2017, 9:31-38
[48] Zhang X, Wang W, Wang A, et al. Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery[J]. J Mater Chem A, 2014, 2(30):11660-11665
[49] Zhang Z, Xu X, Wang S, et al. Li2O-Reinforced Cu nanoclusters as porous structure for dendrite-free and long-lifespan lithium metal anode[J]. ACS Applied Materials & Interfaces, 2016, 8(40):26801-26808
[50] Guo C, Yang H, Naveed A, et al. AlF3-Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes[J]. Chemical Communications, 2018, 54(60):8347-8350
[51] Ji X L, Liu D, Prendiville D G, et al. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition[J]. Nano Today, 2012, 7(1):10-20
[52] Zhang A, Fang X, Shen C, et al. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life[J]. Nano Research, 2016, 9(11):3428-3436
[53] Raji A R O, Villegas S R, Kim N D, et al. Lithium batteries with nearly maximum metal storage[J]. ACS Nano, 2017, 11(6):6362-6369
[54] Mukherjee R, Thomas A V, Datta D, et al. Defect-Induced plating of lithium metal within porous graphene networks[J]. Nature Communications, 2014, doi:10.1038/ncomms4710
[55] Yu X, Lee Y J, Furstenberg R, et al. Filling fraction dependent properties of inverse opal metallic photonic crystals[J]. Advanced Materials, 2007, 19(13):1689-1692
[56] Velev O D, Tessier P M, Lenhoff A M, et al. A class of porous metallic nanostructures[J]. Nature, 1999, doi:10.1038/44065
[57] Yamauchi Y, Yokoshima T, Momma T, et al. Fabrication of magnetic mesostructured nickel-cobalt alloys from lyotropic liquid crystalline media by electroless deposition[J]. J Mater Chem, 2004, 14(19):2935-2940
[58] Hsueh H Y, Huang Y, Ho R M, et al. Nanoporous gyroid nickel from block copolymer templates via electroless plating[J]. Advanced Materials, 2011, 23(27):3041-3046
[59] Shin H, Dong J, Liu M. Nanoporous structures prepared by an electrochemical deposition process[J]. Advanced Materials, 2003, 15(19):1610-1614
[60] Ding Y, Chen M. Nanoporous metals for catalytic and optical applications[J]. MRS Bulletin, 2009, 34(8):569-576
[61] Pugh D V, Dursun A, Corcoran S G. Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25[J]. Journal of Materials Research, 2003, 18(1):216-221
[62] Chi S, Liu Y, Song W, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2017, doi:10.1002/adfm.201770151
[63] Ke X, Cheng Y, Liu J, et al. Hierarchically bicontinuous porous copper as advanced 3D skeleton for stable lithium storage[J]. ACS Applied Materials & Interfaces, 2018, 10(16):13552-13561
[64] Yang C, Yin Y, Zhang S, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, doi:10.1038/ncomms 9058
[65] Zhang R, Chen X, Chen X, et al. Inside cover:Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, doi:doi.org/10.1002/anie.201704344 Citations:5
[66] Li Z, Li X, Zhou L, et al. A collaborative strategyfor stable lithium metal anodes by using three-dimensional nitrogen-doped graphene foams[J]. Nanoscale, 2018, 10(10):4675-4679
[67] Wang H, Li Y, Li Y, et al. Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy[J]. Nano Letters, 2019, 19(2):1326-1335
[68] Go W, Kim M H, Park J, et al. Nanocrevasse-Rich carbon fibers for stable lithium and sodium metal anodes[J]. Nano Letters, 2019, 19(3):1504-1511
[69] Zuo T, Wu X, Yang C, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Advanced Materials, 2017, doi:10.1002/adma.201700389
[70] Zhang Y, Liu B, Hitz E, et al. A carbon-based 3D current collector with surface protection for Li metal anode[J]. Nano Research, 2017, 10(4):1356-1365
[71] Wang Y, Shen Y, Du Z, et al. A lithium-carbon nanotube composite for stable lithium anodes[J]. Journal of Materials Chemistry A, 2017, 5(45):23434-23439
|