[1] Tang Y, Zhang Y, Li W, et al. Rational material design for ultrafast rechargeable lithium battery[J]. Chem Soc Rev, 2015, 44:5926-5940
[2] Wang Z, Zhou L, Lou X. Metal oxide hollow nanostructures for lithium-ion batteries[J]. Advanced Materials, 2012, 24(14):1903-1911
[3] Tian G, Huang K, Qi X, et al. Free-Standing SnO2 nanoparticles@graphene hybrid paper for advanced lithium-ion batteries[J]. Ceramics International, 2014, 40(5):6891-6897
[4] Liu H. SnO2 sheet/graphite composite as anode material with improved electrochemical performance for lithium-ion batteries[J]. Journal of Sol-Gel Science and Technology, 2014, 72(3):644-647
[5] Ding L, He S, Miao S, et al. Ultrasmall SnO2 nanocrystals:Hot-Bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage[J]. Scientific Reports, 2014, 4:4647
[6] Liu S, Zhu K, Tian J, et al. Submicron-Sized mesoporous anatase TiO2 beads with trapped SnO2 for long-term, high-rate lithium storage[J]. Journal of Alloys and Compounds, 2015, 639:60-67
[7] Lee Y, Jo M R, Song K, et al. Hollow Sn-SnO2 nanocrystal/graphite composites and their lithium storage properties[J]. ACS Applied Materials & Interfaces, 2012, 4(7):3459-3464
[8] Gurunathan P, Ette P M, Ramesha K. Synthesis of hierarchically porous SnO2 microspheres and performance evaluation as Li-ion battery anode by using different binders[J]. ACS Applied Materials & Interfaces, 2014, 6:16556-16564
[9] Lian Pe, Wang J, Cai D, et al. Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries[J]. Electrochimica Acta, 2014, 116:103-110
[10] Chen L, Yin X, Mei L et al. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries[J]. Nanotechnology, 2012, 23(3):035402
[11] Yin X, Chen L, Li C, et al. Synthesis of mesoporous SnO2 spheres via self-assembly and superior lithium storage properties[J]. Electrochimica Acta, 2011, 56(5):2358-2363
[12] Liang J, Yu X, Zhou H, et al. Bowl-Like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries[J]. Angewandte Chemie, 2014, 53(47):12803-12807
[13] Zhang L, Zhang G, Wu H, et al. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage[J]. Advanced Materials, 2013, 25(18):2589-2593
[14] Wu H, Chen J, Lou X, et al. Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties[J]. The Journal of Physical Chemistry C, 2011, 115(50):24605-24610
[15] Liu L, An M, Yang P, et al. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries[J]. Scientific Reports, 2015, 5:9055
[16] 陈然,虞桢君,詹亮, 等. 黏结剂对SnO2/石墨烯负极材料电化学行为的影响[J].化学工业与工程,2014,31(3):44-49 Chen Ran, Yu Zhenjun, Zhan liang et al. Effects of binders on the electrochemical performance of SnO2/graphene anode material[J]. Chemical Industry and Engineering, 2014, 31(3):44-49(in Chinese)
[17] Tan C, Cao J, Abdul M K, et al. High-Performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2014, 270:28-33
|