[1] Katz H, B Gel W, Büchel J. Industrial awareness of lithium batteries in the world, during the past two years[J]. Journal of Power Sources, 1998, 72(1):43-50
[2] Yoo H D, Markevich E, Salitra G, et al. On the challenge of developing advanced technologies for electrochemical energy storage and conversion[J]. Materials Today, 2014, 17(3):110-121
[3] Cheng F, Tao Z, Liang J, et al. Template-Directed materials for rechargeable lithium-ion batteries[J]. Chemistry of Materials, 2008, 20(3):667-681
[4] Zhao Y, Li X, Yan B, et al. Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries:A review[J]. Journal of Power Sources, 2015, 274:869-884
[5] Zhang H, Sun X, Zhang X, et al. High-Capacity nanocarbon anodes for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2015, 622:783-788
[6] 崔振宇, 杨绍斌, 于继甫, 等. 锂离子电池石墨负极材料的改性方法[J]. 电池, 2003, (6):384-387 Cui Zhenyu, Yang Saobin, Yu Jifu, et al. The modification methods of lithium ion battery graphite anode materials[J]. J Cell, 2003, (6):384-387(in Chinese)
[7] Wang J, Wang C, Zhu Y, et al. Electrochemical stability of optimized Si/C composites anode for lithium-ion batteries[J]. Ionics, 2015, 21(2):579-585
[8] Jaumann T, Herklotz M, Klose M, et al. Tailoring hollow silicon-carbon nanocomposites as high-performance anodes in secondary lithium-based batteries through economical chemistry[J]. Chemistry of Materials, 2015, 27(1):37-43
[9] Wen Z, Yang J, Wang B, et al. High capacity silicon/carbon composite anode materials for lithium ion batteries[J]. Electrochemistry Communications, 2003, 5(2):165-168
[10] 王丽君. 压实密度及电解液种类对锂离子电池的影响[J]. 广州化工, 2013(15):76-78 Wang Lijun. The compaction density and kinds of electrolyte for lithium ion batteries[J]. Journal of Guangzhou Chemical Industry, 2013, (15):76-78(in Chinese)
[11] 杨洪, 何显峰, 李峰. 压实密度对高倍率锂离子电池性能的影响[J]. 电源技术, 2009,(11):959-962 Yang Hong, He Xianfeng, Li Feng. Effect of compaction density on the properties of high rate of lithium ion battery[J]. Power Supply Technology, 2009,(11):959-962(in Chinese).
[12] 袁文静. 快充锂离子电池的应用开发[J]. 科技创新与应用, 2014, (35):11-11 Yuan Wenjing. Application development of quick charge lithium ion battery[J]. Science and Technology Innovation and Application, 2014, (35):11-11(in Chinese)
[13] Striebel K A, Sierra A, Shim J, et al. The effect of compression on natural graphite anode performance and matrix conductivity[J]. Journal of Power Sources, 2004, 134(2):241-251
[14] Rattanaweeranon S, Limsuwan P, Thongpool V, et al. Influence of bulk graphite density on electrical conductivity[J]. Procedia Engineering, 2012, 32:1100-1106
[15] Chung D W, Shearing P R, Brandon N P, et al. Particle size polydispersity in Li-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(3):A422-A430
[16] Liu D, Wang Y, Xie Y, et al. On the stress characteristics of graphite anode in commercial pouch lithium-ion battery[J]. Journal of Power Sources, 2013, 23(20):29-33
[17] 庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010, (6):1044-1057 Zhuang Quanchao, Xu Shoudong, Qiu Xiangyun, et al. Lithium ion battery of the electrochemical impedance spectroscopy analysis[J]. Chemical Progress, 2010, (6):1044-1057(in Chinese)
|